Advertisement

Algebra and Logic

, Volume 53, Issue 6, pp 502–505 | Cite as

Autostability Spectra for Boolean Algebras

  • N. A. Bazhenov
COMMUNICATIONS

Keywords

Boolean Algebra Computable Structure Computable Sequence Turing Degree Computable Presentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. S. Goncharov and Yu. L. Ershov, Constructive Models, Sib. School Alg. Log. [in Russian], Nauch. Kniga, Novosibirsk (1999).Google Scholar
  2. 2.
    C. J. Ash and J. F. Knight, Computable Structures and the Hyperarithmetical Hierarchy, Stud. Log. Found. Math., 144, Elsevier, Amsterdam (2000).Google Scholar
  3. 3.
    E. B. Fokina, I. Kalimullin, and R. Miller, “Degrees of categoricity of computable structures,” Arch. Math. Log., 49, No. 1, 51–67 (2010).CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    B. F. Csima, J. N. Franklin, and R. A. Shore, “Degrees of categoricity and the hyperarithmetic hierarchy,” Notre Dame J. Formal Log., 54, No. 2, 215–231 (2013).CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    S. S. Goncharov, “Degrees of autostability relative to strong constructivizations,” Trudy MIAN, 274, 119–129 (2011).MathSciNetGoogle Scholar
  6. 6.
    S. S. Goncharov and M. I. Marchuk, “Index sets of constructive models that are autostable under strong constructivizations,” Vestnik NGU, Mat., Mekh., Inf., 13, No. 4, 43–67 (2013).Google Scholar
  7. 7.
    S. S. Goncharov, Countable Boolean Algebras and Decidability, Sib. School Alg. Log. [in Russian], Nauch. Kniga, Novosibirsk (1996).Google Scholar
  8. 8.
    N. A. Bazhenov, “Degrees of categoricity for superatomic Boolean algebras,” Algebra and Logic, 52, No. 3, 179–187 (2013).CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    N. A. Bazhenov, “Δ2 0-categoricity of Boolean algebras,” Vestnik NGU, Mat., Mekh., Inf., 13, No. 2, 3–14 (2013).zbMATHMathSciNetGoogle Scholar
  10. 10.
    N. A. Bazhenov, “Degrees of autostability relative to strong constructivizations for Boolean algebras,” to appear in Algebra and Logic.Google Scholar
  11. 11.
    Yu. L. Ershov, “Decidability of the elementary theory of relatively complemented distributive lattices and the theory of filters,” Algebra Logika, 3, No. 3, 17–38 (1964).zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations