Algebra and Logic

, Volume 53, Issue 6, pp 502–505 | Cite as

Autostability Spectra for Boolean Algebras

COMMUNICATIONS

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. S. Goncharov and Yu. L. Ershov, Constructive Models, Sib. School Alg. Log. [in Russian], Nauch. Kniga, Novosibirsk (1999).Google Scholar
  2. 2.
    C. J. Ash and J. F. Knight, Computable Structures and the Hyperarithmetical Hierarchy, Stud. Log. Found. Math., 144, Elsevier, Amsterdam (2000).Google Scholar
  3. 3.
    E. B. Fokina, I. Kalimullin, and R. Miller, “Degrees of categoricity of computable structures,” Arch. Math. Log., 49, No. 1, 51–67 (2010).CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    B. F. Csima, J. N. Franklin, and R. A. Shore, “Degrees of categoricity and the hyperarithmetic hierarchy,” Notre Dame J. Formal Log., 54, No. 2, 215–231 (2013).CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    S. S. Goncharov, “Degrees of autostability relative to strong constructivizations,” Trudy MIAN, 274, 119–129 (2011).MathSciNetGoogle Scholar
  6. 6.
    S. S. Goncharov and M. I. Marchuk, “Index sets of constructive models that are autostable under strong constructivizations,” Vestnik NGU, Mat., Mekh., Inf., 13, No. 4, 43–67 (2013).Google Scholar
  7. 7.
    S. S. Goncharov, Countable Boolean Algebras and Decidability, Sib. School Alg. Log. [in Russian], Nauch. Kniga, Novosibirsk (1996).Google Scholar
  8. 8.
    N. A. Bazhenov, “Degrees of categoricity for superatomic Boolean algebras,” Algebra and Logic, 52, No. 3, 179–187 (2013).CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    N. A. Bazhenov, “Δ2 0-categoricity of Boolean algebras,” Vestnik NGU, Mat., Mekh., Inf., 13, No. 2, 3–14 (2013).MATHMathSciNetGoogle Scholar
  10. 10.
    N. A. Bazhenov, “Degrees of autostability relative to strong constructivizations for Boolean algebras,” to appear in Algebra and Logic.Google Scholar
  11. 11.
    Yu. L. Ershov, “Decidability of the elementary theory of relatively complemented distributive lattices and the theory of filters,” Algebra Logika, 3, No. 3, 17–38 (1964).MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations