Algebra and Logic

, Volume 53, Issue 4, pp 349–351 | Cite as

On Constructive Recognition of Finite Simple Groups by Element Orders

  • A. A. Buturlakin
  • A. V. Vasil’ev


Positive Integer Simple Group Orthogonal Group Distinct Vertex Soluble Radical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. D. Mazurov, “Recognition of finite groups by a set of orders of their elements,” Algebra and Logic, 37, No. 6, 371-379 (1998).CrossRefMathSciNetGoogle Scholar
  2. 2.
    V. D. Mazurov, “Groups with prescribed spectrum,” Izv. Ural. Gos. Univ., Mat. Mekh., Issue 7, No. 36, 119-138 (2005).Google Scholar
  3. 3.
    M. A. Grechkoseeva and A. V. Vasil’ev, “On the structure of finite groups isospectral to finite simple groups,” (2014), arXiv:1409.8086.Google Scholar
  4. 4.
    A. A. Buturlakin, “Isospectral finite simple groups,” Sib. El. Mat. Izv., 7, 111-114 (2010).MathSciNetGoogle Scholar
  5. 5.
    A. V. Vasil’ev and E. P. Vdovin, “An adjacency criterion for the prime graph of a finite simple group,” Algebra and Logic, 44, No. 6, 381-406 (2005).CrossRefMathSciNetGoogle Scholar
  6. 6.
    A. A. Buturlakin, “Spectra of finite linear and unitary groups,” Algebra and Logic, 47, No. 2, 91-99 (2008).CrossRefMathSciNetGoogle Scholar
  7. 7.
    A. A. Buturlakin, “Spectra of finite symplectic and orthogonal groups,” Sib. Adv. Math., 21, No. 3, 176-210 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations