Algebra and Logic

, Volume 52, Issue 3, pp 179–187 | Cite as

Degrees of categoricity for superatomic Boolean algebras

Article

It is proved that every computable superatomic Boolean algebra has a strong degree of categoricity.

Keywords:

superatomic Boolean algebras computable categoricity degree of categoricity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. S. Goncharov, V. S. Harizanov, J. F. Knight, C. McCoy, R. Miller, and R. Solomon, “Enumerations in computable structure theory,” Ann. Pure Appl. Log., 136, No. 3, 219-246 (2005).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    J. Chisholm, E. B. Fokina, S. S. Goncharov, V. S. Harizanov, J. F. Knight, and S. Quinn, “Intrinsic bounds on complexity and definability at limit levels,” J. Symb. Log., 74, No. 3, 1047-1060 (2009).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    E. B. Fokina, I. Kalimullin, and R. Miller, “Degrees of categoricity of computable structures,” Arch. Math. Log., 49, No. 1, 51-67 (2010).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    B. F. Csima, J. N. Y. Franklin, and R. A. Shore, “Degrees of categoricity and the hyperarithmetic hierarchy,” Notre Dame J. Formal Log., 54, No. 2, 215-231 (2013).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    S. S. Goncharov, “Degrees of autostability relative to strong constructivizations,” Trudy MIAN, 274, 119-129 (2011).MathSciNetGoogle Scholar
  6. 6.
    S. S. Goncharov and V. D. Dzgoev, “Autostability of models,” Algebra Logika, 19, No. 1, 45-58 (1980).MathSciNetGoogle Scholar
  7. 7.
    J. B. Remmel, “Recursive isomorphism types of recursive Boolean algebras,” J. Symb. Log., 46, No. 3, 572-594 (1981).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    C. McCoy, “\( \Delta_2^0 \)-categoricity in Boolean algebras and linear orderings,” Ann. Pure Appl. Log., 119, Nos. 1-3, 85-120 (2003).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    C. F. McCoy, “Partial results in \( \Delta_3^0 \)-categoricity in linear orderings and Boolean algebras,” Algebra Logika, 41, No. 5, 531-552 (2002).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    K. Harris, “Categoricity in Boolean algebras,” to appear.Google Scholar
  11. 11.
    N. A. Bazhenov, “\( \Delta_2^0 \)-categoricity of Boolean algebras,” Vestnik NGU, Mat., Mekh., Inf., 13, No. 2, 3-14 (2013).Google Scholar
  12. 12.
    S. S. Goncharov, Countable Boolean Algebras and Decidability, Sib. School Alg. Log. [in Russian], Nauch. Kniga, Novosibirsk (1996).Google Scholar
  13. 13.
    S. S. Goncharov and Yu. L. Ershov, Constructive Models, Siberian School of Algebra and Logic [in Russian], Nauch. Kniga, Novosibirsk (1999).Google Scholar
  14. 14.
    C. J. Ash and J. F. Knight, Computable Structures and the Hyperarithmetical Hierarchy, Stud. Logic Found. Math., 144, Elsevier, Amsterdam (2000).MATHGoogle Scholar
  15. 15.
    H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York (1967).MATHGoogle Scholar
  16. 16.
    S. S. Goncharov, “Constructivizability of superatomic Boolean algebras,” Algebra Logika, 12, No. 1, 31-40 (1973).CrossRefMATHGoogle Scholar
  17. 17.
    C. J. Ash, “Categoricity in hyperarithmetical degrees,” Ann. Pure Appl. Log., 34, No. 1, 1-14 (1987).MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    P. M. Semukhin, “The degree spectra of definable relations on Boolean algebras,” Sib. Mat. Zh., 46, No. 4, 928-941 (2005).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations