Algebra and Logic

, Volume 50, Issue 4, pp 291–322 | Cite as

Cocliques of maximal size in the prime graph of a finite simple group

  • A. V. Vasil’ev
  • E. P. Vdovin

A prime graph of a finite group is defined in the following way: the set of vertices of the graph is the set of prime divisors of the order of the group, and two distinct vertices r and s are joined by an edge if there is an element of order rs in the group. We describe all cocliques of maximal size for finite simple groups.


finite simple group group of Lie type prime graph coclique 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Vasil’ev and E. P. Vdovin, “An adjacency criterion for the prime graph of a finite simple group,” Algebra Logika, 44, No. 6, 682–725 (2005).MathSciNetMATHGoogle Scholar
  2. 2.
    J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford (1985).MATHGoogle Scholar
  3. 3.
    The GAP Group, GAP—Groups, Algorithms, and Programming, Vers. 4.4.12 (2008);
  4. 4.
    K. Zsigmondy, “Zur Theorie der Potenzreste,” Monatsh. Math. Phys., 3, 265–284 (1892).MathSciNetCrossRefGoogle Scholar
  5. 5.
    M. Roitman, “On Zsigmondy primes,” Proc. Am. Math. Soc., 125, No. 7, 1913–1919 (1997).MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    A. V. Zavarnitsine, “Recognition of the simple groups L 3(q) by element orders,” J. Group Theory, 7, No. 1, 81–97 (2004).MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    A. S. Kondratiev, “Subgroups of finite Chevalley groups,” Usp. Mat. Nauk, 41, No. 1(247), 57–96 (1986).Google Scholar
  8. 8.
    R. W. Carter, “Conjugacy classes in the Weyl group,” Comp. Math., 25, No. 1, 1–59 (1972).MATHGoogle Scholar
  9. 9.
    A. V. Zavarnitsine, “Recognition of finite groups by the prime graph,” Algebra Logika, 45, No. 4, 390–408 (2006).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  1. 1.Sobolev Institute of Mathematics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations