Algebra and Logic

, Volume 50, Issue 1, pp 29–45 | Cite as

Factor morphisms and centroids of locally nilpotent groups


For a class of locally nilpotent groups, we study interrelations between two known analogs of the concept of a ring centroid in the class of groups.


locally nilpotent group ring centroid factor morphism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. N. Ponomaryov, Rigid Algebras and Non-Associative Rings, Novosibirsk Techn. Univ., Novosibirsk (2007).Google Scholar
  2. 2.
    K. N. Ponomaryov, “Factor morphisms of nilpotent groups,” Sib. Mat. Zh., 32, No. 3, 119–125 (1991).Google Scholar
  3. 3.
    S. Lioutikov and A. Myasnikov, “Centroids of groups,” J. Group Th., 3, No. 2, 177–197 (2000).CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    I. V. Arzhantsev, “Uniqueness of addition in semisimple Lie algebras,” Usp. Mat. Nauk, 56, No. 3, 155/156 (2001).MathSciNetGoogle Scholar
  5. 5.
    G. Pilz, Near-Rings. The Theory and Its Applications, North-Holland Math. Stud., 23, North-Holland, New York (1977).Google Scholar
  6. 6.
    M. I. Kargapolov and Yu. I. Merzlyakov, Fundamentals of Group Theory [in Russian], 2nd edn., Nauka, Moscow (1977).Google Scholar
  7. 7.
    A. G. Kurosh, Group Theory [in Russian], Nauka, Moscow (1967).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  1. 1.P/B 410NovosibirskRussia

Personalised recommendations