Algebra and Logic

, Volume 48, Issue 6, pp 385–409 | Cite as

Characterization of the finite simple groups by spectrum and order

  • A. V. Vasil’ev
  • M. A. Grechkoseeva
  • V. D. Mazurov

We give an affirmative answer to Question 12.39 in the Kourovka Notebook. Namely, it is proved that a finite simple group and a finite group having equal orders and same sets of element orders are isomorphic.


finite group simple group element orders recognizability by spectrum and order symplectic group orthogonal group 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Shi, “A new characterization of the sporadic simple groups,” in Group Theory, Proc. 1987 Singapore Group Theory Conf., Walter de Gruyter, New York (1989), pp. 531-540.Google Scholar
  2. 2.
    Unsolved Problems in Group Theory, The Kourovka Notebook, 16th edn., Institute of Mathematics SO RAN, Novosibirsk (2006),∼alglog.
  3. 3.
    W. Shi and J. Bi, “A new characterization of the alternating groups,” Southeast Asian Bull. Math., 16, No. 1, 81-90 (1992).zbMATHMathSciNetGoogle Scholar
  4. 4.
    W. Shi and J. Bi, “A characterization of Suzuki–Ree groups,” Sci. China, Ser. A, 34, No. 1, 14-19 (1991).zbMATHMathSciNetGoogle Scholar
  5. 5.
    W. Shi, “The pure quantitative characterization of finite simple groups (I),” Progr. Nat. Sci., 4, No. 3, 316-326 (1994).Google Scholar
  6. 6.
    W. Shi and J. Bi, “A characteristic property for each finite projective special linear group,” in Lect. Notes Math., 1456, Springer-Verlag, Berlin (1990), pp. 171-180.Google Scholar
  7. 7.
    H. Cao and W. Shi, “Pure quantitative characterization of finite projective special unitary groups,” Sci. China, Ser. A, 45, No. 6, 761-772 (2002).zbMATHMathSciNetGoogle Scholar
  8. 8.
    M. Xu and W. Shi, “Pure quantitative characterization of finite simple groups 2 D n(q) and D l(q) (l odd),” Alg. Coll., 10, No. 3, 427-443 (2003).zbMATHMathSciNetGoogle Scholar
  9. 9.
    A. V. Vasil’ev, M. A. Grechkoseeva, and V. D. Mazurov, “On finite groups isospectral to simple symplectic and orthogonal groups,” Sib. Mat. Zh., 50, No. 6, 1223-1245 (2009).MathSciNetGoogle Scholar
  10. 10.
    J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford (1985).zbMATHGoogle Scholar
  11. 11.
    K. Zsigmondy, “Zur Theorie der Potenzreste,” Monatsh. Math. Phys., 3, 265-284 (1892).CrossRefMathSciNetGoogle Scholar
  12. 12.
    M. Roitman, “On Zsigmondy primes,” Proc. Am. Math. Soc., 125, No. 7, 1913-1919 (1997).zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    D. Deriziotis, “Conjugacy classes and centralizers of semisimple elements in finite groups of Lie type,” Vorlesungen Fachbereich Math. Univ. Essen, 11 (1984).Google Scholar
  14. 14.
    D. M. Testerman, “A 1-Type overgroups of elements of order p in semisimple algebraic groups and the associated finite groups,” J. Alg., 177, No. 1, 34-76 (1995).zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    D. I. Deriziotis and A. P. Fakiolas, “The maximal tori in the finite Chevalley groups of type E 6, E 7, and E 8,” Comm. Alg., 19, No. 3, 889-903 (1991).zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    D. Deriziotis, “The centralizers of semisimple elements of the Chevalley groups E 7 and E 8,” Tokyo J. Math., 6, No. 1, 191-216 (1983).zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    A. A. Buturlakin and M. A. Grechkoseeva, “The cyclic structure of maximal tori of the finite classical groups,” Algebra Logika, 46, No. 2, 129-156 (2007).zbMATHMathSciNetGoogle Scholar
  18. 18.
    A. A. Buturlakin, “Spectra of finite linear and unitary groups,” Algebra Logika, 47, No. 2, 157-173 (2008).zbMATHMathSciNetGoogle Scholar
  19. 19.
    A. A. Buturlakin, “Spectra of finite simple symplectic groups and orthogonal groups of odd dimension,” Preprint No. 204, Inst. Mat. SO RAN, Novosibirsk (2009).Google Scholar
  20. 20.
    A. V. Vasil’ev, I. B. Gorshkov, M. A. Grechkoseeva, A. S. Kondrat’ev, and A. M. Staroletov, “On recognizability by spectrum of finite simple groups of types B n, C n and 2 D n for n = 2k,” Trudy Inst. Mat. Mekh. UrO RAN, 15, No. 2, 58-73 (2009).Google Scholar
  21. 21.
    M. A. Grechkoseeva, “Recognition by spectrum for finite linear groups over fields of characteristic 2,” Algebra Logika, 47, No. 4, 405-427 (2008).zbMATHMathSciNetGoogle Scholar
  22. 22.
    W. Shi, “On a problem of E. Artin,” Acta Math. Sin., 35, No. 2, 262-265 (1992).zbMATHGoogle Scholar
  23. 23.
    V. D. Mazurov, “Characterization of finite groups by sets of element orders,” Algebra Logika, 36, No. 1, 37-53 (1997).zbMATHMathSciNetGoogle Scholar
  24. 24.
    J. S. Williams, “Prime graph components of finite groups,” J. Alg., 69, No. 2, 487-513 (1981).zbMATHCrossRefGoogle Scholar
  25. 25.
    A. S. Kondrat’ev, “Prime graph components of finite simple groups,” Mat. Sb., 180, No. 6, 787-797 (1989).zbMATHGoogle Scholar
  26. 26.
    V. D. Mazurov, “Recognition of finite simple groups S 4(q) by their element orders,” Algebra Logika, 41, No. 2, 166-198 (2002).zbMATHMathSciNetGoogle Scholar
  27. 27.
    A. V. Vasil’ev, “On connection between the structure of a finite group and the properties of its prime graph,” Sib. Mat. Zh., 46, No. 3, 511-522 (2005).zbMATHGoogle Scholar
  28. 28.
    A. V. Vasil’ev and I. B. Gorshkov, “On recognition of finite simple groups with connected prime graph,” Sib. Mat. Zh., 50, No. 2, 292-299 (2009).MathSciNetGoogle Scholar
  29. 29.
    A. V. Vasiliev and E. P. Vdovin, “An adjacency criterion for the prime graph of a finite simple group,” Algebra Logika, 44, No. 6, 682-725 (2005).zbMATHMathSciNetGoogle Scholar
  30. 30.
    M. R. Aleeva, “On finite simple groups with the set of element orders as in a Frobenius or a double Frobenius group,” Mat. Zametki, 73, No. 3, 323-339 (2003).MathSciNetGoogle Scholar
  31. 31.
    A. V. Zavarnitsine, “A solvable group isospectral to S 4(3),” Sib. Mat. Zh., to appear.Google Scholar
  32. 32.
    W. Shi and C. Y. Tang, “A characterization of some orthogonal groups,” Prog. Nat. Sci., 7, No. 2, 155-162 (1997).zbMATHMathSciNetGoogle Scholar
  33. 33.
    V. D. Mazurov and A. R.Moghaddamfar, “The recognition of the simple group S 8(2) by its spectrum,” Alg. Coll., 13, No. 4, 643-646 (2006).zbMATHMathSciNetGoogle Scholar
  34. 34.
    A. V. Vasil’ev and E. P. Vdovin, “Cocliques of maximal size in the prime graph of a finite simple group,” Preprint No. 225, Inst. Mat. SO RAN, Novosibirsk (2009);
  35. 35.
    M. A. Grechkoseeva, “On difference between the spectra of the simple groups B n(q) and C n(q),” Sib. Mat. Zh., 48, No. 1, 89-92 (2007).zbMATHMathSciNetGoogle Scholar
  36. 36.
    W. Shi, “Pure quantitative characterization of finite simple groups,” Front. Math. China, 2, No. 1, 123-125 (2007).CrossRefMathSciNetGoogle Scholar
  37. 37.
    A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum,” Sib. Electr. Math. Rep., 6, 1-12 (2009);

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • A. V. Vasil’ev
    • 1
    • 2
  • M. A. Grechkoseeva
    • 1
    • 2
  • V. D. Mazurov
    • 1
    • 2
  1. 1.Sobolev Institute of Mathematics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations