Algebra and Logic

, 48:410 | Cite as

autostability of prime models under strong constructivizations

  • S. S. GoncharovEmail author

We furnish an example of an Ehrenfeucht theory whose prime model is autostable under strong constructivizations and there exists a prime model in a finite expansion by constants that is nonautostable under strong constructivizations of the theory constructed.


Ehrenfeucht theory prime model autostability strong constructivization 


  1. 1.
    A. Fröhlich and J. Shepherdson, “Effective procedures in field theory,” Philos. Trans. Roy. Soc. London, Ser. A, 248, 407-432 (1956).zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A. I. Mal’tsev, “On recursive Abelian groups,” Dokl. Akad. Nauk SSSR, 146, No. 5, 1009-1012 (1962).MathSciNetGoogle Scholar
  3. 3.
    A. I. Mal’tsev, “Constructive models. I,” Usp. Mat. Nauk, 16, No. 3, 3-60 (1961).Google Scholar
  4. 4.
    E. B. Fokina, “Arithmetical Turing degrees and categorical theories of computable models,” in Mathematical Logic in Asia, Proc. 9th Asian Logic Conf. (2006), pp. 58-69.Google Scholar
  5. 5.
    S. S. Goncharov and Yu. L. Ershov, Constructive Models, Sib. School Alg. Log. [in Russian], Nauch. Kniga, Novosibirsk (1999).Google Scholar
  6. 6.
    E. B. Fokina, “Spectra of computable models,” Vestnik NGU, Mat., Mekh., Inf., 6, No. 6, 69-73 (2006).Google Scholar
  7. 7.
    J. H. Schmerl, “A decidable ℵ0-categorical theory with a non-recursive Ryll-Nardzewski function,” Fund. Math., 98, No. 2, 121-125 (1978).zbMATHMathSciNetGoogle Scholar
  8. 8.
    A. Gavryushkin, “On complexity of Ehrenfeucht theories with computable model,” in Logical Approaches to Computational Barriers, Second Conf. Comput. Europe, Rep. Ser., Swansea Univ. (2006), pp. 105-108.Google Scholar
  9. 9.
    A. N. Gavryushkin, “Complexity of Ehrenfeucht models,” Algebra Logika, 46, No. 5, 507-519 (2006).MathSciNetGoogle Scholar
  10. 10.
    M. G. Peretyatkin, “Complete theories with finite number of countable models,” Algebra Logika, 12, No. 5, 550-576 (1973).Google Scholar
  11. 11.
    S. Goncharov and B. Khoussainov, “Open problems in the theory of constructive algebraic systems,” Cont. Math., 257, Am. Math. Soc., Providence, RI (2000), pp. 145-170.Google Scholar
  12. 12.
    T. S. Millar, “Foundations of recursive model theory,” Ann. Math. Log., 13, No. 1, 45-72 (1978).zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    T. Millar, “Persistently finite theories with hyperarithmetic models,” Trans. Am. Math. Soc., 278, No. 1, 91-99 (1983).zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    T. Millar, “Decidability and the number of countable models,” Ann. Pure Appl. Log., 27, No. 2, 137-153 (1984).zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    T. Millar, “Decidable Ehrenfeucht theories,” Proc. Symp. Pure Math., 42 (1985), pp. 311-321.MathSciNetGoogle Scholar
  16. 16.
    J. Knight, “Nonarithmetical ℵ0-categorical theories with recursive models,” J. Symb. Log., 59, No. 1, 106-112 (1994).zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    R. Reed, “A decidable Ehrenfeucht theory with exactly two hyperarithmetic models,” Ann. Pure Appl. Log., 53, No. 2, 135-168 (1991).zbMATHCrossRefGoogle Scholar
  18. 18.
    C. Ash and T. Millar, “Persistently finite, persistently arithmetic theories,” Proc. Am. Math. Soc., 89, 487-492 (1983).zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    M. Lerman and J. Scmerl, “Theories with recursive models,” J. Symb. Log., 44, No. 1, 59-76 (1979).zbMATHCrossRefGoogle Scholar
  20. 20.
    S. Lempp and T. A. Slaman, “The complexity of the index sets of 0-categorical theories and of Ehrenfeucht theories,” Cont. Math., 425, Am. Math. Soc., Providence, RI (2007), pp. 43-47.Google Scholar
  21. 21.
    M. Morley, “Decidable models,” Israel J. Math., 25, 233-240 (1976).zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    R. Vaught, “Denumerable models of complete theories,” in Infinitistic Methods, Proc. Symp. Found. Math., Pergamon, London (1961), pp. 303-321.Google Scholar
  23. 23.
    S. S. Goncharov, “Strong constructivizability of homogeneous models,” Algebra Logika, 17, No. 4, 363-388 (1978).MathSciNetGoogle Scholar
  24. 24.
    M. G. Peretyatkin, “A strong constructivizability criterion for homogeneous models,” Algebra Logika, 17, No. 4, 436-454 (1978).MathSciNetGoogle Scholar
  25. 25.
    A. N. Gavryushkin, “Spectra of computable models for Ehrenfeucht theories,” Algebra Logika, 46, No. 3, 275-289 (2007).zbMATHMathSciNetGoogle Scholar
  26. 26.
    A. N. Gavryushkin, “Constructive models of theories with linear Rudin–Keisler ordering” Vestnik NGU, Mat., Mekh., Inf., 9, No. 2, 30-37 (2009).Google Scholar
  27. 27.
    A. Gavryushkin, “Computable models spectra of Ehrenfeucht theories,” in Logic Coll. 2007, Uniw. Wroclawski (2007), pp. 46-47.Google Scholar
  28. 28.
    A. Gavryushkin, “Computable models spectra of Ehrenfeucht theories,” in Logic and Theory of Algorithms, Fourth Conf. Comput. Europe, Univ. Athens (2008), pp. 50-51.Google Scholar
  29. 29.
    H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York (1967).zbMATHGoogle Scholar
  30. 30.
    C. C. Chang and H. J. Keisler, Model Theory, North-Holland, Amsterdam (1973).zbMATHGoogle Scholar
  31. 31.
    A. T. Nurtazin, “Strong and weak constructivizations and computable families,” Algebra Logika, 13, No. 3, 311-323 (1974).zbMATHMathSciNetGoogle Scholar
  32. 32.
    E. A. Palyutin, “Algebras of formulas for countably categorical theories,” Coll. Math., 31, 157-159 (1974).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.Sobolev Institute of Mathematics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations