Algebra and Logic

, Volume 48, Issue 2, pp 89–98 | Cite as

The twisted conjugacy problem for endomorphisms of metabelian groups

Article

Let M be a finitely generated metabelian group explicitly presented in a variety \( {\mathcal{A}}^2 \) of all metabelian groups. An algorithm is constructed which, for every endomorphism φ ∈ End(M) identical modulo an Abelian normal subgroup N containing the derived subgroup M′ and for any pair of elements u, vM, decides if an equation of the form ()u = vx has a solution in M. Thus, it is shown that the title problem under the assumptions made is algorithmically decidable. Moreover, the twisted conjugacy problem in any polycyclic metabelian group M is decidable for an arbitrary endomorphism φ ∈ End(M).

Keywords

metabelian group twisted conjugacy endomorphism fixed points Fox derivatives 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Hall, “Finiteness conditions for soluble groups,” Proc. London Math. Soc., III. Ser., 4, 419–436 (1954).MATHCrossRefGoogle Scholar
  2. 2.
    P. Hall, “On the finiteness of certain soluble groups,” Proc. London Math. Soc., III. Ser., 9, 595–622 (1959).MATHCrossRefGoogle Scholar
  3. 3.
    G. Baumslag, F. B. Cannonito, and D. J. Robinson, “The algorithmic theory of finitely generated metabelian groups,” Trans. Am. Math. Soc., 344, No. 2, 629–648 (1994).MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    V. N. Remeslennikov and V. A. Roman’kov, “Algorithmic and model-theoretic problems in groups,” in Itogi Nauki Tekhniki. Algebra, Geometry, and Topology, 21, 3–79 (1983).MathSciNetGoogle Scholar
  5. 5.
    G. A. Noskov, “Conjugacy problem in metabelian groups,” Mat. Zametki, 31, No. 4, 495–507 (1982).MATHMathSciNetGoogle Scholar
  6. 6.
    V. Schpilrain and A. Ushakov, “An authentication scheme based on the twisted conjugacy problem,” arXiv: math. GR/08052701v1 (2008).Google Scholar
  7. 7.
    V. Roman’kov and E. Ventura, “On the twisted conjugacy problem for endomorphisms of nilpotent groups,” to appear.Google Scholar
  8. 8.
    V. Roman’kov and E. Ventura, “The twisted conjugacy problem for endomorphisms of polycyclic groups,” to appear.Google Scholar
  9. 9.
    A. Fel’shyn and E. Troitsky, “Twisted conjugacy separable groups,” arXiv: math. GR/0606764v2 (2006).Google Scholar
  10. 10.
    V. N. Remeslennikov, “Conjugacy in polycyclic groups,” Algebra Logika, 8, No. 6, 712–725 (1969).MathSciNetGoogle Scholar
  11. 11.
    E. Formanek, “Conjugate separability in polycyclic groups,” J. Alg., 42, 1–10 (1976).MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    O. G. Kharlampovich, “A finitely presented solvable group with undecidable word problem,” Izv. Akad. Nauk SSSR, Ser. Mat., 45, No. 4, 852–873 (1981).MATHMathSciNetGoogle Scholar
  13. 13.
    L. Fuchs, Infinite Abelian Groups, Vols. 1/2, Academic Press, New York (1973).Google Scholar
  14. 14.
    A. Seidenberg, “Constructions in a polynomial ring over the ring of integers,” Am. J. Math., 100, 685–706 (1978).MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    R. H. Fox, “Free differential calculus. I: Derivation in the free group ring,” Ann. Math. (2), 57, 547–560 (1953).CrossRefGoogle Scholar
  16. 16.
    R. H. Fox, “Free differential calculus. II: The isomorphism problem of groups,” Ann. Math. (2), 59, 196–210 (1954).CrossRefGoogle Scholar
  17. 17.
    R. H. Fox, “Free differential calculus. III: Subgroups,” Ann. Math. (2), 64, 407–419 (1956).CrossRefGoogle Scholar
  18. 18.
    R. H. Fox, “Free differential calculus. V: The Alexander matrices reexamined,” Ann. Math. (2), 71, 408–422 (1960).CrossRefGoogle Scholar
  19. 19.
    N. Gupta, Free Group Rings, Cont. Math., 66, Am., Math., Soc., Providence, RI (1987).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.University Politécnica de CatalunyaManresa, BarcelonaSpain
  2. 2.Dostoevskii Omsk State UniversityOmskRussia

Personalised recommendations