Algebra and Logic

, Volume 45, Issue 6, pp 361–370 | Cite as

Isomorphism types of Rogers semilattices for families from different levels of the arithmetical hierarchy

  • S. A. Badaev
  • S. S. Goncharov
  • A. Sorbi
Article

Abstract

We investigate differences in isomorphism types for Rogers semilattices of computable numberings of families of sets lying in different levels of the arithmetical hierarchy.

Keywords

arithmetical hierarchy computable numbering Rogers semilattice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. S. Goncharov and A. Sorbi, “Generalized computable numerations and nontrivial Rogers semilattices,” Algebra Logika, 36, No. 6, 621–641 (1997).MathSciNetGoogle Scholar
  2. 2.
    S. A. Badaev, S. S. Goncharov, and A. Sorbi, “Isomorphism types and theories of Rogers semilattices of arithmetical numberings,” in Computability and Models, S. B. Cooper and S. S. Goncharov (eds.), Kluwer Academic/Plenum Publishers, New York (2003), pp. 79–91.Google Scholar
  3. 3.
    S. A. Badaev, S. S. Goncharov, and A. Sorbi, “Elementary properties of Rogers semilattices of arithmetical numberings,” in Proc. 7th and 8th Asian Logic Conf., R. Downey, D. Ding, S. H. Tung, etc. (eds.), World Scientific, Singapore (2003), pp. 1–10.Google Scholar
  4. 4.
    S. A. Badaev, S. S. Goncharov, and A. Sorbi, “Elementary theories for Rogers semilattices,” Algebra Logika, 44, No. 3, 261–268 (2005).MathSciNetGoogle Scholar
  5. 5.
    A. I. Mal’tsev, Algorithms and Recursive Functions [in Russian], Nauka, Moscow (1965).Google Scholar
  6. 6.
    H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York (1967).MATHGoogle Scholar
  7. 7.
    R. I. Soare, Recursively Enumerable Sets and Degrees, A Study of Computable Functions and Computably Generated Sets, Springer, Berlin (1987).Google Scholar
  8. 8.
    Yu. L. Ershov, Theory of Numerations [in Russian], Nauka, Moscow (1977).Google Scholar
  9. 9.
    S. S. Goncharov, Countable Boolean Algebras and Decidability, Sib. School Alg. Log. [in Russian], Nauch. Kniga, Novosibirsk (1996).Google Scholar
  10. 10.
    S. A. Badaev, S. S. Goncharov, and A. Sorbi, “Completeness and universality of arithmetical numberings,” in Computability and Models, S. B. Cooper and S. S. Goncharov (eds.), Kluwer Academic/Plenum Publishers, New York (2003), pp. 11–44.Google Scholar
  11. 11.
    S. A. Badaev, S. S. Goncharov, S. Yu. Podzorov, and A. Sorbi, “Algebraic properties of Rogers semilattices of arithmetical numberings,” in Computability and Models, S. B. Cooper and S. S. Goncharov (eds.), Kluwer Academic/Plenum Publishers, New York (2003), pp. 45–77.Google Scholar
  12. 12.
    V. D. Dzgoev, “Constructive enumerations of Boolean lattices,” Algebra Logika, 27, No. 6, 641–648 (1988).MathSciNetGoogle Scholar
  13. 13.
    L. Feiner, “Hierarchies of Boolean algebras,” J. Symb. Log., 35, No. 3, 365–374 (1970).CrossRefMathSciNetGoogle Scholar
  14. 14.
    A. H. Lachlan, “On the lattice of recursively enumerable sets,” Trans. Am. Math. Soc., 130, No. 1, 1–37 (1968).CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • S. A. Badaev
    • 1
  • S. S. Goncharov
    • 2
  • A. Sorbi
    • 3
  1. 1.Kazakh National UniversityAlma-AtaKazakhstan
  2. 2.Institute of Mathematics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  3. 3.Dipartimento di Scienze Matematiche ed Informatiche “Roberto Magari”SienaItaly

Personalised recommendations