Advertisement

Algebra and Logic

, Volume 44, Issue 1, pp 1–12 | Cite as

Strongly constructive Boolean algebras

  • P. E. Alaev
Article

Abstract

A computable structure is said to be n-constructive if there exists an algorithm which, given a finite ∑n-formula and a tuple of elements, determines whether that tuple satisfies this formula. A structure is strongly constructive if such an algorithm exists for all formulas of the predicate calculus, and is decidable if it has a strongly constructive isomorphic copy. We give a complete description of relations between n-constructibility and decidability for Boolean algebras of a fixed elementary characteristic.

Keywords

computable structure Boolean algebra n-constructive structure strongly constructive structure decidable structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    S. S. Goncharov, “Bounded theories of constructive Boolean algebras,” Sib. Mat. Zh., 17, No. 4, 797–812 (1976).Google Scholar
  2. 2.
    Y. L. Ershov, S. S. Goncharov, A. Nerode, and J. B. Remmel (eds.), Handbook of Recursive Mathematics, Vol. 2, Elsevier, Amsterdam (1998).Google Scholar
  3. 3.
    Y. L. Ershov and S. S. Goncharov (eds.), The Logical Notebook, Unsolved Problems in Mathematical Logic, Institute of Mathematics SO AN SSSR, Novosibirsk (1986).Google Scholar
  4. 4.
    S. S. Goncharov, Countable Boolean Algebras [in Russian], Nauka, Novosibirsk (1988).Google Scholar
  5. 5.
    S. S. Goncharov, Countable Boolean Algebras and Decidability, Siberian School of Algebra and Logic [in Russian], Nauch. Kniga, Novosibirsk (1996).Google Scholar
  6. 6.
    P. E. Alaev, “Decidable Boolean algebras of characteristic (1,0,1),” Mat. Trudy, 7, No. 1, 3–12 (2004).Google Scholar
  7. 7.
    S. S. Goncharov, “Some properties of constructivizations of Boolean algebras,” Sib. Mat. Zh., 16, No. 2, 264–278 (1975).Google Scholar
  8. 8.
    Yu. L. Ershov, “Decidability of the elementary theory of distributive structures with relative complements and of the filter theory,” Algebra Logika, 3, No. 3, 17–38 (1964).Google Scholar
  9. 9.
    S. P. Odintsov, “Restrictions in the theory of constructive Boolean algebras from the lower layer,” Preprint No. 21, Institute of Mathematics, Novosibirsk (1986).Google Scholar
  10. 10.
    V. N. Vlasov and S. S. Goncharov, “Strong constructibility of Boolean algebras of elementary characteristic (1,1,0),” Algebra Logika, 32, No. 6, 618–630 (1993).Google Scholar
  11. 11.
    V. N. Vlasov, “Constructibility of Boolean algebras of elementary characteristic (1,0,1),” Algebra Logika, 37, No. 5, 499–521 (1998).Google Scholar
  12. 12.
    J. F. Knight and M. Stob, “Computable Boolean algebras,” J. Symb. Log., 65, No. 4, 1605–1623 (2000).Google Scholar
  13. 13.
    R. G. Downey and C. G. Jockush, “Every low Boolean algebra is isomorphic to a recursive one,” Proc. Am. Math. Soc., 122, No. 3, 871–880 (1994).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • P. E. Alaev

There are no affiliations available

Personalised recommendations