Advertisement

On Guay’s Evaluation Map for Affine Yangians

  • Ryosuke KoderaEmail author
Article
  • 2 Downloads

Abstract

We give a detailed proof of the existence of evaluation map for affine Yangians of type A to clarify that it needs an assumption on parameters. This map was first found by Guay but a proof of its well-definedness and the assumption have not been written down in the literature. We also determine the highest weights of evaluation modules defined as the pull-back of integrable highest weight modules of the affine Lie algebra \(\hat {\mathfrak {gl}}_{N}\) by the evaluation map.

Keywords

Affine Yangian Evaluation map Evaluation module 

Mathematics Subject Classification (2010)

17B10 17B37 17B67 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 17H06127 and 18K13390.

References

  1. 1.
    Feigin, B., Finkelberg, M., Negut, A., Rybnikov, L.: Yangians and cohomology rings of Laumon spaces. Selecta Math. (N.S.) 17(3), 573–607 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Feigin, B., Jimbo, M., Mukhin, E.: Evaluation modules for quantum toroidal \(\mathfrak {gl}_{n}\) algebras. arXiv:1709.01592
  3. 3.
    Guay, N.: Cherednik algebras and Yangians. Int. Math. Res. Not. 57, 3551–3593 (2005)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Guay, N.: Affine Yangians and deformed double current algebras in type A. Adv. Math. 211(2), 436–484 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Guay, N., Nakajima, H., Wendlandt, C.: Coproduct for Yangians of affine Kac-Moody algebras. Adv. Math. 338, 865–911 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Guay, N., Regelskis, V., Wendlandt, C.: Vertex representations for Yangians of Kac-Moody algebras. J. Éc. polytech. Math. 6, 665–706 (2019)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kodera, R.: Affine Yangian action on the Fock space. Publ. Res. Inst. Math. Sci. 55(1), 189–234 (2019)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kodera, R.: Higher level Fock spaces and affine Yangian. Transform Groups 23 (4), 939–962 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kodera, R.: Braid group action on affine Yangian. SIGMA Symmetry Integrability. Geom. Methods Appl. 15, 020 (2019). 28 pagesMathSciNetzbMATHGoogle Scholar
  10. 10.
    Miki, K.: Toroidal and level 0 \(\mathrm {U}_{q}^{\prime }(\widehat {sl_{n+1}})\) actions on \(\mathrm {U}_{q}(\widehat {gl_{n+1}})\) modules. J. Math. Phys. 40(6), 3191–3210 (1999)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Nagao, K.: K-theory of quiver varieties, q-Fock space and nonsymmetric Macdonald polynomials. Osaka J. Math. 46(3), 877–907 (2009)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Saito, Y., Takemura, K., Uglov, D.: Toroidal actions on level 1 modules of \(U_{q}(\widehat {\mathfrak {sl}}_{n})\). Transform Groups 3(1), 75–102 (1998)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Schiffmann, O., Vasserot, E.: Cherednik algebras, W-algebras and the equivariant cohomology of the moduli space of instantons on A2. Publ. Math. Inst. Hautes Études Sci. 118, 213–342 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Takemura, K., Uglov, D.: Representations of the quantum toroidal algebra on highest weight modules of the quantum affine algebra of type \(\mathfrak {gl}_{N}\). Publ. Res. Inst. Math. Sci. 35(3), 407–450 (1999)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Varagnolo, M.: Quiver varieties and Yangians. Lett. Math. Phys. 53(4), 273–283 (2000)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Varagnolo, M., Vasserot, E.: Double-loop algebras and the Fock space. Invent. Math. 133(1), 133–159 (1998)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.Department of Mathematics, Graduate School of ScienceKobe UniversityKobeJapan

Personalised recommendations