Stability Conditions for Affine Type A

  • P. J. Apruzzese
  • Kiyoshi IgusaEmail author
Open Access


We construct maximal green sequences of maximal length for any affine quiver of type A. We determine which sets of modules (equivalently c-vectors) can occur in such sequences and, among these, which are given by a linear stability condition (also called a central charge). There is always at least one such maximal set which is linear. The proofs use representation theory and three kinds of diagrams shown in Fig. 1. Background material is reviewed with details presented in two separate papers Igusa (2017a, b).


Maximal green sequences Cluster mutation Quivers c-vectors Central charge Wire diagram Wall crossing 

Mathematics Subject Classification (2010)




  1. 1.
    Assem, I., Simson, D., Skowroński, A.: Elements of the representation theory of associative algebras, 1: Techniques of representation theory London Mathematical Society Student Texts, vol. 65. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  2. 2.
    Auslander, M., Reiten, I., Smalø, S.O.: Representation theory of Artin algebras, vol. 36. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  3. 3.
    Bridgeland, T.: Stability conditions on triangulated categories. Ann. Math. 166 (2), 317–345 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bridgeland, T.: Spaces of stability conditions. Algebraic geometry–Seattle 1 (2009), 1–21 (2005)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Brüstle, T., Dupont, G., Pérotin, M.: On maximal green sequences. Int. Math. Res. Not. 2014, 4547–4586 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Brüstle, T., Smith, D., Treffinger, H.: Stability conditions, tau-tilting theory and maximal green sequences. arXiv:1705.08227 (2017)
  7. 7.
    Buan, A.B., Marsh, R.J., Reineke, M., Reiten, I., Todorov, G.: Tilting theory and cluster combinatorics. Adv. Math. 204(2), 572–618 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Buan, A.B., Marsh, R.J., Reiten, I.: Cluster-tilted algebras. Trans. Amer. Math. Soc. 359(1), 323–332 (2007). (electronic)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bucher, E.: Cluster algebras and maximal green sequences for closed surfaces (2016)Google Scholar
  10. 10.
    Chávez, A.N.: On the c-vectors of an acyclic cluster algebra. Int. Math. Res. Not. 6(2013), 1590–1600 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Derksen, H., Weyman, J.: Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients. J. Amer. Math. Soc. 13(3), 467–479 (2000). (electronic)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dlab, V., Ringel, C.M.: Indecomposable representations of graphs and algebras. Vol. 173 American Mathematical Soc. (1976)Google Scholar
  13. 13.
    Keller, B.: On cluster theory and quantum dilogarithm identities. arXiv:1102.4148
  14. 14.
    Keller, B.: A survey on maximal green sequences, with an appendix by Laurent Demonet. arXiv:1904.09247
  15. 15.
    Hermes, S., Igusa, K.: The no gap conjecture for tame hereditary algebras. Journal of Pure and Applied Algebra 223(3), 1040–1053 (2019)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Igusa, K.: Linearity of stability conditions. arXiv:1706.06986 (2017)
  17. 17.
    Igusa, K.: Maximal green sequences for cluster-tilted algebras of finite type. arXiv:1706.06503 (2017)
  18. 18.
    Igusa, K., Orr, K., Todorov, G., Weyman, J.: Modulated semi-invariants. arXiv:1507.03051v2
  19. 19.
    Kase, R.: Remarks on lengths of maximal green sequences for quivers of type \(\widetilde {A}_{n,1}\). arXiv:1507.02852
  20. 20.
    King, A.D.: Moduli of representations of finite dimensional algebras, Quart. J. Math. Oxford 45, 515–530 (1994)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Muller, G.: The existence of a maximal green sequence is not invariant under quiver mutation. The Electronic Journal of Combinatorics 23(2), 2–47 (2016)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Qin, F.: Bases for upper cluster algebras and tropical points. arXiv:1902.09507
  23. 23.
    Qiu, Y.: Stability conditions and quantum dilogarithm identities for Dynkin quivers. Adv Math. 269, 220–264 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Reineke, M.: The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli. Invent. Math. 152(2), 349–368 (2003)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Cormier, E., Dillery, P., Resh, J., Serhiyenko, K., Whelan, J.: Minimal length maximal green sequences and triangulations of polygons. J. Algebraic Combin. 44(4), 905–930 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Rudakov, A.: Stability for an abelian category. J. of Algebra 197, 231–245 (1997)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Yakimov, M.: Maximal green sequences for double Bruhat cells, preprint (2014)Google Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ConnecticutStorrsUSA
  2. 2.Department of MathematicsBrandeis UniversityWalthamUSA

Personalised recommendations