Decomposition Matrices for the Generic Hecke Algebras on 3 Strands in Characteristic 0

  • Eirini ChavliEmail author


We determine all the decomposition matrices of the generic Hecke algebras on 3 strands in characteristic 0. These are the generic Hecke algebras associated with the exceptional complex reflection groups G4, G8, and G16. We prove that for every choice of the parameters that define these algebras, all simple representations of the specialized algebra are obtained as modular reductions of simple representations of the generic algebra.


Representation theory Hecke algebras Braid group on 3 strands Complex reflection groups Decomposition matrices 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



I would like to thank T. Conde, M. Geck, S. König, J. Külshammer and U. Thiel for fruitful discussions and references. Moreover, I would like to thank J. Michel for suggesting working with powers of the parameters in GAP, and M. Chlouveraki and G. Pfeiffer for carefully reading this paper.


  1. 1.
    Boura, C., Chavli, E., Chlouveraki, M., Karvounis, K.: The BMM symmetrising trace conjecture for groups G4, G5, G6, G7, G8. J Symb Comput. (2019)
  2. 2.
    Broué, M., Malle, G: Zyklotomische Heckealgebren. Astérisque 212, 119–189 (1993)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Broué, M., Malle, G., Michel, J.: Towards Spetses I. Trans. Groups 4 (2-3), 157–218 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Broué, M., Malle, G., Rouquier, R.: Complex reflection groups, braid groups, Hecke algebras. J. reine angew. Math. 500, 127–190 (1998)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Chavli, E.: Universal deformations of the finite quotients of the braid group on 3 strands. J. Algebra 459, 238–271 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chlouveraki, M.: Blocks and families for cyclotomic Hecke algebras, Lecture Notes in Mathematics, p 2009. Springer, Berlin (1981)Google Scholar
  7. 7.
    Chlouveraki, M., Miyachi, H.: Decomposition matrices for d-Harish-Chandra series: the exceptional rank two cases. LMS J. Comput. Math. 14, 271–290 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Coxeter, H.S.M.: Factor groups of the braid group. In: Proceedings of Fourth Canad. Math. Congress, pp. 95–122 (1957)Google Scholar
  9. 9.
    Geck, M., Pfeiffer, G.: Characters of finite Coxeter groups and Iwahori–Hecke algebras, London Math. Soc. Monographs New Series 21. Oxford University Press, New York (2000)zbMATHGoogle Scholar
  10. 10.
    Malle, G.: On the rationality and fake degrees of characters of cyclotomic algebras. J. Math. Sci. Univ. Tokyo 6, 647–677 (1999)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Malle, G., Michel, J.: Constructing representations of Hecke algebras for complex reflection groups. LMS J. Comput. Math. 13, 426–450 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Malle, G., Rouquier, R.: Familles de caractères de groupes de réflexions complexes. Represent. Theory 7, 610–640 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Marin, I., Wagner, E.: Markov traces on the B,irman-Wenzl-Murakami algebras, preprint, arXiv:1403.4021
  14. 14.
    Meliot, P.-L.: Representation theory of symmetric groups. CRC Press, Boca Raton (2017)CrossRefzbMATHGoogle Scholar
  15. 15.
    Michel, J.: The development version of the CHEVIE package of GAP3. J. Algebra 435, 308–336 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Serre, J.-P.: Linear representations of finite groups, vol. 42. Springer Science & Business Media, Berlin (2012)Google Scholar
  17. 17.
    Shephard, G.C., Todd, J.A.: Finite unitary reflection groups. C.nad. J. Math. 6, 274–304 (1954)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institut für Algebra und ZahlentheorieUniversität StuttgartStuttgartGermany

Personalised recommendations