Random Motion on Finite Rings, I: Commutative Rings

  • Arvind AyyerEmail author
  • Pooja Singla


We consider irreversible Markov chains on finite commutative rings randomly generated using both addition and multiplication. We restrict ourselves to the case where the addition is uniformly random and multiplication is arbitrary. We first prove formulas for eigenvalues and multiplicities of the transition matrices of these chains using the character theory of finite abelian groups. The examples of principal ideal rings (such as \(\mathbb {Z}_{n})\) and finite chain rings (such as \(\mathbb {Z}_{p^{k}})\) are particularly illuminating and are treated separately. We then prove a recursive formula for the stationary probabilities for any ring, and use it to prove explicit formulas for the probabilities for finite chain rings when multiplication is also uniformly random. Finally, we prove constant mixing time for our chains using coupling.


Finite commutative rings Markov chains Semigroup algebras Spectrum Stationary distribution Mixing time Finite chain rings 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We are very grateful to the anonymous referees for many constructive suggestions. We would also like to thank M. Krishnapur and B. Steinberg for enlightening discussions. The authors would like to acknowledge support in part by a UGC Centre for Advanced Study grant. The first author (AA) would like to acknowledge support from Department of Science and Technology grants DST/INT/SWD/VR/P-01/2014 and EMR/2016/006624.


  1. 1.
    Aldous, D., Fill, J.: Reversible Markov chains and random walks on graphs, 2002. Manuscript available at
  2. 2.
    Asci, C.: Asymptotic behavior of an affine random recursion in \(\mathbf {Z}_{\mathbf {p}}^{\mathbf {k}}\) defined by a matrix with an eigenvalue of size 1. Statist. Probab. Lett. 79(11), 1421–1428 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Asci, C.: Generating uniform random vectors in \(z^{k_{p}}\): the general case. J. Theoret. Probab. 22(3), 791–809 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Atiyah, M.F., Macdonald, I.G.: Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills Ont. (1969)Google Scholar
  5. 5.
    Ayyer, A., Schilling, A., Steinberg, B., Thiéry, N.M.: Markov chains, \(\mathscr{R}\)-trivial monoids and representation theory. Internat. J. Algebra Comput. 25(1-2), 169–231 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ayyer, A., Singla, P.: Random motion on finite rings, II: noncommutative rings. arXiv:1807.04082 (2018)
  7. 7.
    Ayyer, A., Steinberg, B.: Random walks on rings and modules. arXiv:1708.04223 (2017)
  8. 8.
    Bate, M., Connor, S.: Mixing time and cutoff for a random walk on the ring of integers modn. Bernoulli 24(2), 993–1009 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bidigare, P., Hanlon, P., Rockmore, D.: A combinatorial description of the spectrum for the Tsetlin library and its generalization to hyperplane arrangements. Duke Math. J. 99(1), 135–174 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bini, G., Flamini, F.: Finite commutative rings and their applications. The Kluwer International Series in Engineering and Computer Science, 680. Kluwer Academic Publishers, Boston (2002). With a foreword by Dieter JungnickelCrossRefGoogle Scholar
  11. 11.
    Brown, K.S.: Semigroups, rings, and Markov chains. J. Theoret. Probab. 13(3), 871–938 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chung, F.R.K., Diaconis, P., Graham, R.L.: Random walks arising in random number generation. Ann Probab. 15(3), 1148–1165 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Clark, E.W., Drake, D.A.: Finite Chain Rings. In: Abhandlungen Aus Dem Mathematischen Seminar Der Universität Hamburg, vol. 39, pp. 147–153. Springer (1973)Google Scholar
  14. 14.
    Clark, E.W., Liang, J.J.: Enumeration of finite commutative chain rings. J. Algebra 27(3), 445–453 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Diaconis, P.: Group representations in probability and statistics. Lecture Notes-Monograph Series 11, i–192 (1988)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Diaconis, P., Shahshahani, M.: Generating a random permutation with random transpositions. Z. Wahrsch. Verw. Gebiete 57(2), 159–179 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ding, J., Zhou, A.: Eigenvalues of rank-one updated matrices with some applications. Appl. Math Lett. 20(12), 1223–1226 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Dorroh, J.L.: Concerning adjunctions to algebras. Bull. Amer. Math. Soc. 38(2), 85–88 (1932)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Good, I.J.: Random motion on a finite abelian group. Mathematical proceedings of the cambridge philosophical society, 47:756–762, 10 (1951)Google Scholar
  20. 20.
    Hendricks, W.J.: The stationary distribution of an interesting Markov chain. J. Appl. Probability 9, 231–233 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hildebrand, M.: Random processes of the form X n+ 1 = a n X n + b n (mod p). Ann. Probab. 21(2), 710–720 (1993)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Hildebrand, M., McCollum, J.: Generating random vectors in \((\mathbb {Z}/p\mathbb {Z})^{d}\) via an affine random process. J. Theoret. Probab. 21(4), 802–811 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Levin, D.A., Peres, Y., Wilmer, E.L.: Markov chains and mixing times. American Mathematical Society, Providence (2009). With a chapter by James G. Propp and David B. WilsonzbMATHGoogle Scholar
  24. 24.
    McDonald, B.R.: Finite rings with identity. Marcel Dekker, Inc., New York (1974). Pure and applied mathematics, vol 28zbMATHGoogle Scholar
  25. 25.
    Rhodes, J., Schilling, A.: Unified theory for finite markov chains. arXiv:1711.10689 (2017)
  26. 26.
    Saloff-Coste, L.: Random walks on finite groups. In: Kesten, H. (ed.) Probability on discrete structures, volume 110 of Encyclopaedia of mathematical sciences, pp. 263–346. Springer, Berlin (2004)Google Scholar
  27. 27.
    Steinberg, B.: Möbius functions and semigroup representation theory II: Character formulas and multiplicities. Adv. Math. 217(4), 1521–1557 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Steinberg, B.: The representation theory of finite monoids. pp. xxiv+317. Springer, Cham. (2016)
  29. 29.
    Tsetlin, M.L.: Finite automata and models of simple forms of behaviour. Russ. Math. Surv. 18(4), 1 (1963)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations