Modules over Axial Algebras

  • Tom De Medts
  • Michiel Van CouwenbergheEmail author


We introduce axial representations and modules over axial algebras as new tools to study axial algebras. All known interesting examples of axial algebras fall into this setting, in particular the Griess algebra whose automorphism group is the Monster group. Our results become especially interesting for Matsuo algebras. We vitalize the connection between Matsuo algebras and 3-transposition groups by relating modules over Matsuo algebras with representations of 3-transposition groups. As a by-product, we define, given a Fischer space, a group that can fulfill the role of a universal 3-transposition group.


Axial algebras Modules Axial representations Matsuo algebras 3-transposition groups Fischer spaces 

Mathematics Subject Classification (2010)

Primary 17A99 20B25 20F29 20C05 Secondary 17B69 20C34 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We have benefited from fruitful discussions between Jonathan Hall and the second author during a visit at Michigan State University. We thank the two anonymous referees of earlier versions of this paper for their suggestions, which improved the exposition of the results at many places.


  1. 1.
    Aschbacher, M.: 3-Transposition Groups, Volume 124 of Cambridge Tracts in Mathematics. Cambridge University Press (1997)Google Scholar
  2. 2.
    Borcherds, R.E.: Vertex algebras, Kac-Moody algebras, and the Monster. Proc. Natl. Acad. Sci. USA 83, 3068–3071 (1986)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Buekenhout, F.: La géometrie des groupes de Fischer. Unpublished notes (1974)Google Scholar
  4. 4.
    Frenkel, I., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster, Volume 134 of Pure and Applied Mathematics. Academic Press Inc. (1988)Google Scholar
  5. 5.
    Griess, R.L.: The friendly giant. Invent. math. 69, 1–102 (1982)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hall, J.I.: A characterization of the full wreath product. J. Algebra 300(2), 529–554 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hall, J.I., Rehren, F., Shpectorov, S.: Primitive axial algebras of jordan type. J. Algebra 437, 79–115 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hall, J.I., Rehren, F., Shpectorov, S.: Universal axial algebras and a theorem of Sakuma. J. Algebra 421, 394–424 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hall, J.I., Segev, Y., Shpectorov, S.: Miyamoto involutions in axial algebras of Jordan type half. Israel J. Math. 223(1), 261–308 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ivanov, A.A., Pasechnik, D.V., Seress, Á.: Majorana representations of the symmetric group of degree 4. J. Algebra 324, 2432–2463 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ivanov, A.A.: The Monster Group and Majorana Involutions, Volume 176 of Cambridge Tracts in Mathematics. Cambridge University Press (2009)Google Scholar
  12. 12.
    Jacobson, N.: Structure and Representations of Jordan Algebras, Volume 39 of Colloquium Publications. American Mathematical Society (1968)Google Scholar
  13. 13.
    Rehren, F.G.: Axial Algebras. PhD thesis, University of Birmingham (2015)Google Scholar
  14. 14.
    Tits, J.: On R. Griess’ “Friendly giant”. Invent. Math. 78, 491–499 (1984)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Departement of Mathematics: Algebra and GeometryGhent UniversityGentBelgium

Personalised recommendations