Advertisement

Basic Sets for the Double Covering Groups of the Symmetric and Alternating Groups in Odd Characteristic

  • Olivier BrunatEmail author
  • Jean-Baptiste Gramain
Article
  • 10 Downloads

Abstract

In this paper, following the methods of Brunat and Gramain (J. Reine Angew. Math. 641, 177–202, 2010), we show that the double covering groups of the symmetric and alternating groups have p-basic sets for any odd prime p.

Keywords

Basic set Perfect isometries Double covering groups of the symmetric and alternating groups Modular representation theory 

Mathematics Subject Classification (2010)

Primary 20C30, 20C15 Secondary 20C20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Part of this work was done at the CIRM in Luminy during a research in pairs stay. The authors wish to thank the CIRM gratefully for their financial and logistical support. The first author is supported by Agence Nationale de la Recherche Projet ACORT ANR-12-JS01-0003. The second author also acknowledges financial support from the Engineering and Physical Sciences Research Council grant Combinatorial Representation Theory EP/M019292/1. The authors wish to thank the referee for several helpful suggestions.

References

  1. 1.
    Andrews, G.E., Bessenrodt, C., Olsson, J.B.: Partition identities and labels for some modular characters. Trans. Amer. Math. Soc. 344(2), 597–615 (1994)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bessenrodt, C.: A 2-block splitting in alternating groups. Algebra Number Theory 3(7), 835–846 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bessenrodt, C., Morris, A., Olsson, J.B.: Decomposition matrices for spin characters of symmetric groups at characteristic 3. J. Algebra 164(1), 146–172 (1994)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bessenrodt, C., Olsson, J.B.: The 2-blocks of the covering groups of the symmetric groups. Adv. Math. 129(2), 261–300 (1997)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Broué, M.: Isométries parfaites, types de blocs, catégories dérivées, Astérisque, (181-182):61–92 (1990)Google Scholar
  6. 6.
    Brunat, O.: Basic sets in defining characteristic for general linear groups of small rank. J. Pure Appl. Algebra (2008)Google Scholar
  7. 7.
    Brunat, O., Gramain, J.: A 2-basic set of the alternating group. Arch. Math. (Basel) 94(4), 301–309 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Brunat, O., Gramain, J.: A basic set for the alternating group. J. Reine Angew. Math. 641, 177–202 (2010)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Brunat, O., Gramain, J.: Perfect isometries and Murnaghan-Nakayama rules. Trans. Amer. Math. Soc. 369(11), 7657–7718 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Denoncin, D.: Stable basic sets for finite special linear and unitary groups. Adv. Math. 307, 344–368 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Feit, W.: The Representation Theory of Finite Groups, Volume 25 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam (1982)Google Scholar
  12. 12.
    Geck, M.: Irreducible Brauer characters of the 3-dimensional special unitary groups in nondefining characteristic. Comm. Algebra 18(2), 563–584 (1990)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Geck, M.: Basic sets of Brauer characters of finite groups of Lie type. II. J. London Math. Soc. (2) 47(2), 255–268 (1993)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Geck, M.: Basic sets of Brauer characters of finite groups of Lie type. III. Manuscripta Math. 85(2), 195–216 (1994)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Geck, M., Hiss, G.: Basic sets of Brauer characters of finite groups of Lie type. J. Reine Angew. Math. 418, 173–188 (1991)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Gramain, J.-B.: The Isaacs-Navarro conjecture for covering groups of the symmetric and alternating groups in odd characteristic. J. Algebraic Combin. 34(3), 401–426 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hiss, G.: On the decomposition numbers of G2(q). J. Algebra 120(2), 339–360 (1989)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Humphreys, J.F.: On certain projective modular representations of direct products. J. London Math. Soc. (2) 32, 449–459 (1985)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Humphreys, J.F.: Blocks of projective representations of the symmetric groups. J. London Math. Soc. (2) 33, 441–452 (1986)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Isaacs, I.: Character theory of finite groups. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1976. Pure and applied mathematics, No. 69Google Scholar
  21. 21.
    James, G., Kerber, A.: The Representation Theory of the Symmetric Group, Volume 16 of Encyclopedia of Mathematics and Its Applications. Addison-Wesley Publishing Co., Reading, Mass (1981)Google Scholar
  22. 22.
    Kleshchev, A.S., Tiep, P.H.: Representations of finite special linear groups in non-defining characteristic. Adv. Math. 220(2), 478–504 (2009)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Külshammer, B., Olsson, J.B., Robinson, G.R.: Generalized blocks for symmetric groups. Invent. Math. 151(3), 513–552 (2003)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Livesey, M.: Broué’s perfect isometry conjecture holds for the double covers of the symmetric and alternating groups. Algebr. Represent. Theory 19(4), 783–826 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Michler, G.O., Olsson, J.B.: The Alperin-McKay conjecture holds in the covering groups of symmetric and alternating groups, p≠ 2. J. Reine Angew. Math. 405, 78–111 (1990)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Morris, A.O.: The spin representation of the symmetric group. Proc. London Math. Soc. 12(3), 55–76 (1962)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Morris, A.O.: The spin representation of the symmetric group. Canad. J. Math. 17, 543–549 (1965)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Morris, A.O., Olsson, J.B.: On p-quotients for spin characters. J. Algebra 119(1), 51–82 (1988)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Morris, A.O., Yaseen, A.K.: Some combinatorial results involving shifted Young diagrams. Math. Proc. Camb. Phil. Soc. 99, 23–31 (1986)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Olsson, J.B.: The number of modular characters in certain p-blocks. Proc. London Math. Soc. (3) 65(2), 245–265 (1992)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Olsson, J.B.: Combinatorics and Representations of Finite Groups. Vorlesungen aus dem Fachbereich Mathematik der universität GH Essen, Helf 20 (1993)Google Scholar
  32. 32.
    Schur, I.: ÜBer die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen. J. Reine Angew. Math. 139, 155–250 (1911)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institut de Mathématiques de Jussieu – Paris Rive Gauche, UFR de MathématiquesUniversité Paris-Diderot Paris 7Paris Cedex 13France
  2. 2.Institute of MathematicsUniversity of AberdeenAberdeenUK

Personalised recommendations