Advertisement

Twisted Tensor Products of Kn with Km

  • Jack Arce
  • Jorge A. Guccione
  • Juan J. GuccioneEmail author
  • Christian Valqui
Article
  • 3 Downloads

Abstract

We find three families of twisting maps of Km with Kn, where K is a field, and we make a detailed study of its properties. One of them is related to truncated quiver algebras, the second one consists of deformations of the first and the third one requires m = n and yields algebras isomorphic to Mn(K).

Keywords

Twisted tensor products Quivers 

Mathematics Subject Classification (2010)

Primary 16S35 Secondary 16S38 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brzeziński, T., Majid, S.: Coalgebra bundles. Commun. Math. Phys. 191(2), 467–492 (1998).  https://doi.org/10.1007/s002200050274. MR1604340MathSciNetCrossRefGoogle Scholar
  2. 2.
    Brzeziński, T., Majid, S.: Quantum geometry of algebra factorisations and coalgebra bundles. Commun. Math. Phys. 213(3), 491–521 (2000).  https://doi.org/10.1007/PL00005530. MR1785427MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cap, A., Schichl, H., Vanžura, J.: On twisted tensor products of algebras. Commun. Algebra 23(12), 4701–4735 (1995).  https://doi.org/10.1080/00927879508825496. MR1352565MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cartier, P.: Produits tensoriels tordus. Exposé au Séminaire des groupes quantiques de l’ École Normale Supérieure, Paris (Unknown Month 1991)Google Scholar
  5. 5.
    Caenepeel, S., Ion, B., Militaru, G., Zhu, S.: The factorization problem and the smash biproduct of algebras and coalgebras. Algebr. Represent. Theory 3(1), 19–42 (2000).  https://doi.org/10.1023/A:1009917210863. MR1755802MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cibils, C.: Non-commutative duplicates of finite sets. J. Algebra Appl. 5(3), 361–377 (2006).  https://doi.org/10.1142/S0219498806001776. MR2235816MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cortadellas, Ó., López Peña, J., Navarro, G: Factorization structures with a two-dimensional factor. J. Lond. Math. Soc. (2) 81(1), 1–23 (2010).  https://doi.org/10.1112/jlms/jdp055. MR2580451MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gerstenhaber, M.: On the deformation of rings and algebras. Ann. Math. (2) 79, 59–103 (1964). MR0171807MathSciNetCrossRefGoogle Scholar
  9. 9.
    Guccione, J.A., Guccione, J.J.: Hochschild homology of twisted tensor products. K-Theory 18(4), 363–400 (1999).  https://doi.org/10.1023/A:1007890230081. MR1738899MathSciNetCrossRefGoogle Scholar
  10. 10.
    Guccione, J.A., Guccione, J.J., Valqui, C.: Twisted planes. Commun. Algebra 38(5), 1930–1956 (2010).  https://doi.org/10.1080/00927870903023105. MR2642035MathSciNetCrossRefGoogle Scholar
  11. 11.
    Guccione, J.A., Guccione, J.J., Valqui, C.: Non commutative truncated polynomial extensions. J. Pure Appl. Algebra 216(11), 2315–2337 (2012).  https://doi.org/10.1016/j.jpaa.2012.01.021. MR2927170MathSciNetCrossRefGoogle Scholar
  12. 12.
    Jara, P., López Peña, J., Navarro, G., Ştefan, D.: On the classification of twisting maps between K n and K m. Algebr. Represent. Theory 14 (5), 869–895 (2011).  https://doi.org/10.1007/s10468-010-9222-x. MR2832263MathSciNetCrossRefGoogle Scholar
  13. 13.
    Jara Martínez, P., López Peña, J., Panaite, F., van Oystaeyen, F.: On iterated twisted tensor products of algebras. Internat. J. Math. 19(9), 1053–1101 (2008).  https://doi.org/10.1142/S0129167X08004996. MR2458561MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kassel, C.: Quantum groups, Graduate Texts in Mathematics, vol. 155, p xii+ 531. Springer, New York (1995). MR1321145zbMATHGoogle Scholar
  15. 15.
    López Peña, J., Navarro, G.: On the classification and properties of noncommutative duplicates. K-Theory 38(2), 223–234 (2008).  https://doi.org/10.1007/s10977-007-9017-y. MR2366562MathSciNetCrossRefGoogle Scholar
  16. 16.
    Majid, S.: Physics for algebraists: noncommutative and noncocommutative Hopf algebras by a bicrossproduct construction. J. Algebra 130 (1), 17–64 (1990).  https://doi.org/10.1016/0021-8693(90)90099-A. MR1045735MathSciNetCrossRefGoogle Scholar
  17. 17.
    Majid, S.: Algebras and Hopf algebras in braided categories. In: Advances in Hopf algebras. Lecture Notes in Pure and Appl. Math., vol. 158, Dekker, New York, 1994, pp. 55–105. MR1289422, Chicago (1992)Google Scholar
  18. 18.
    Montgomery, S.: Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence. MR1243637 (1993)Google Scholar
  19. 19.
    Pierce, R.S.: Associative algebras, Graduate Texts in Mathematics, vol. 88. Springer, New York (1982). Studies in the History of Modern Science, 9. MR674652Google Scholar
  20. 20.
    Tambara, D.: The coendomorphism bialgebra of an algebra. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 37(2), 425–456 (1990). MR1071429MathSciNetzbMATHGoogle Scholar
  21. 21.
    Van Daele, A., Van Keer, S.: The Yang-Baxter and pentagon equation. Compos. Math. 91(2), 201–221 (1994). MR1273649MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Sección Matemáticas, PUCPPontificia Universidad Católica del PerúLima 32Perú
  2. 2.Facultad de Ciencias Exactas y Naturales, Departamento de MatemáticaUniversidad de Buenos AiresBuenos AiresArgentina
  3. 3.Instituto de Investigaciones Matemáticas “Luis A. Santaló” (IMAS)CONICET-Universidad de Buenos AiresBuenos AiresArgentina
  4. 4.CONICET, Instituto Argentino de Matemática (IAM)Buenos AiresArgentina
  5. 5.Instituto de Matemática y Ciencias Afines (IMCA)Lima 12Perú

Personalised recommendations