Presentations of Principal Subspaces of Higher Level Standard \({A}_{2}^{(2)}\)-Modules
Article
First Online:
- 15 Downloads
Abstract
We study the principal subspaces of higher level standard \({A}_{2}^{(2)}\)-modules, extending earlier work in the level one case, by Calinescu, Lepowsky and Milas. We prove natural presentations of principal subspaces and also of certain related spaces. By using these presentations we obtain exact sequences, which yield recursions satisfied by the characters of the principal subspaces and related spaces. We conjecture a formula for a specialized character of the principal subspace, given by the Nahm sum of the inverse of the tadpole Cartan matrix.
Keywords
Twisted affine Lie algebras Twisted vertex-algebra modules Principal subspacesMathematics Subject Classification (2010)
17B69 17B65 05A17Preview
Unable to display preview. Download preview PDF.
Notes
Acknowledgements
We thank the referee for providing us with constructive comments.
References
- 1.Borcherds, R.E.: Vertex, algebras, Kac-Moody, algebras, and the Monster. Proc. Natl. Acad. Sci. USA 83, 3068–3071 (1986)MathSciNetCrossRefGoogle Scholar
- 2.Butorac, M.: Combinatorial bases of principal subspaces for the affine Lie algebra of type \({B}_{2}^{(1)}\). J. Pure Appl. Algebra 218, 424–447 (2014)MathSciNetCrossRefGoogle Scholar
- 3.Butorac, M.: Quasi-particle bases of principal subspaces for the affine Lie algebras of types \({B}_{l}^{(1)}\) and \({C}_{l}^{(1)}\). Glas. Mat. Ser. III(51), 59–108 (2016)MathSciNetCrossRefGoogle Scholar
- 4.Butorac, M.: Quasi-particle bases of principal subspaces of the affine Lie algebra of type \({G}_{2}^{(1)}\). Glas. Mat. Ser. III(52), 79–98 (2017)MathSciNetCrossRefGoogle Scholar
- 5.Butorac, M., Sadowski, C.: Combinatorial bases of principal subspaces of modules for twisted affine Lie algebras of type \({A}_{2l-1}^{(2)}\), \({D}_{l}^{(2)}\), \({E}_{6}^{(2)}\) and \({D}_{4}^{(3)}\), preprintGoogle Scholar
- 6.Calinescu, C., Lepowsky, J., Milas, A.: Vertex-algebraic structure of the principal subspaces of certain \({A}_{1}^{(1)}\)-modules, I: level one case. Internat. J. Math. 19, 71–92 (2008)MathSciNetCrossRefGoogle Scholar
- 7.Calinescu, C., Lepowsky, J., Milas, A.: Vertex-algebraic structure of the principal subspaces of certain \({A}_{1}^{(1)}\)-modules, II: higher level case. J. Pure Appl. Algebra 212, 1928–1950 (2008)MathSciNetCrossRefGoogle Scholar
- 8.Calinescu, C., Lepowsky, J., Milas, A.: Vertex-algebraic structure of the principal subspaces of level one modules for the untwisted affine Lie algebras of types A, D, E. J. Algebra 323, 167–192 (2010)MathSciNetCrossRefGoogle Scholar
- 9.Calinescu, C., Lepowsky, J., Milas, A.: Vertex-algebraic structure of principal subspaces of standard \({A}_{2}^{(2)}\)-modules, I. Internat. J. Math. 25(1450063) (2014)Google Scholar
- 10.Capparelli, S., Lepowsky, J., Milas, A.: The Rogers-Ramanujan recursion and intertwining operators. Comm. Contemp. Math. 5, 947–966 (2003)MathSciNetCrossRefGoogle Scholar
- 11.Capparelli, S., Lepowsky, J., Milas, A.: The Rogers-Selberg recursions, the Gordon-Andrews identities and intertwining operators. The Ramanujan Journal 12, 379–397 (2006)MathSciNetCrossRefGoogle Scholar
- 12.Calinescu, C., Milas, A., Penn, M.: Vertex-algebraic structure of principal subspaces of basic \({A}_{2n}^{(2)}\)-modules. J. Pure Appl. Algebra 220, 1752–1784 (2016)MathSciNetCrossRefGoogle Scholar
- 13.Feigin, B., Stoyanovsky, A.: Quasi-particles models for the representations of Lie algebras and geometry of flag manifold; arXiv:hep-th/9308079
- 14.Feigin, B., Stoyanovsky, A.: Functional models for representations of current algebras and semi-infinite Schubert cells (Russian). Funktsional Anal. i Prilozhen 28, 68–90 (1994). translation in: Funct. Anal. Appl. 28 (1994), 55–72MathSciNetGoogle Scholar
- 15.Frenkel, I., Huang, Y.-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Memoirs American Math. Soc. 104 (1993)Google Scholar
- 16.Frenkel, I., Lepowsky, J., Meurman, A.: Vertex Operator Calculus. In: Mathematical Aspects of String Theory, Proc. 1986 Conference, San Diego, ed. by S.-T. Yau, World Scientific, Singapore, pp 150–188 (1987)Google Scholar
- 17.Frenkel, I., Lepowsky, J., Meurman, A.: Vertex operator algebras and the monster. Pure and Applied Math., vol. 134 academic press (1988)Google Scholar
- 18.Jerkovic, M.: Recurrences and characters of Feigin-Stoyanovsky’s type subspaces. Vertex operator algebras and related areas. Contemp. Math. 497, 113–123 (2009)MathSciNetCrossRefGoogle Scholar
- 19.Kac, V.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
- 20.Kožic, S.: Principal subspaces for quantum affine algebra \(u_{q}({A}_{n}^{(1)})\). J. Pure Appl. Algebra 218, 2119–2148 (2014)MathSciNetCrossRefGoogle Scholar
- 21.Lepowsky, J.: Calculus of twisted vertex operators. Proc. Nat. Acad. Sci. USA 82, 8295–8299 (1985)MathSciNetCrossRefGoogle Scholar
- 22.Lepowsky, J.: Perspectives on vertex operators and the Monster. in: Proceedings 1987 Symposium on the Mathematical Heritage of Hermann Weyl, Duke Univ. Proc. Symp. Pure Math., American Math. Soc. 48, 181–197 (1988)CrossRefGoogle Scholar
- 23.Lepowsky, J., Li, H.: Introduction to Vertex Operator Algebras and Their Representations Progress in Mathematics, vol. 227. Birkhäuser, Boston (2003)Google Scholar
- 24.Li, H.-S.: Local systems of twisted vertex operators, vertex superalgebras and twisted modules. Contemp. Math. 193, 203–236 (1996)MathSciNetCrossRefGoogle Scholar
- 25.Milas, A., Penn, M.: Lattice vertex algebras and combinatorial bases: general case and \(\mathcal {W}\)-algebras. New York J. Math. 18, 621–650 (2012)MathSciNetzbMATHGoogle Scholar
- 26.Penn, M., Lattice Vertex Superalgebras, I: Presentation of the principal subspace. Commun. Algebra 42(3), 933–961 (2014)CrossRefGoogle Scholar
- 27.Penn, M., Sadowski, C.: Vertex-algebraic structure of principal subspaces of basic \({D}_{4}^{(3)}\)-modules. The Ramanujan Journal 43(4), 571–617 (2017)CrossRefGoogle Scholar
- 28.Penn, M., Sadowski, C.: Vertex-algebraic structure of principal subspaces of basic modules for twisted affine Kac-Moody Lie algebras of type \({A}_{2n + 1}^{(2)}, {D}_{n}^{(2)}, {E}_{6}^{(2)}\). J. Algebra 496, 242–291 (2018)MathSciNetCrossRefGoogle Scholar
- 29.Penn, M., Sadowski, C., Webb, G.: Twisted Modules of Principal Subalgebras of Lattice Vertex Algebras, 40 pgs, submittedGoogle Scholar
- 30.Primc, M.: (K, r)-admissible configurations and intertwining operators. Contemp. Math 422, 425–434 (2007)MathSciNetCrossRefGoogle Scholar
- 31.Sadowski, C.: Presentations of the principal suspaces of higher level \(\widehat {\mathfrak {sl}(3)}\)-modules. J. Pure Appl. Algebra 219, 2300–2345 (2015)MathSciNetCrossRefGoogle Scholar
- 32.Sadowski, C.: Principal subspaces of \(\widehat {\mathfrak {sl}(n)}\)-modules. Int. J. Math. 26(08), 1550063 (2015)CrossRefGoogle Scholar
- 33.Trupcevic, G.: Combinatorial bases of Feigin-Stoyanovsky’s type subspaces of level one standard modules for \(\tilde {\mathfrak {sl}}(l + 1, \mathbb {C})\). Comm. Algebra 38, 3913–3940 (2010)MathSciNetCrossRefGoogle Scholar
- 34.Trupcevic, G.: Combinatorial bases of Feigin-Stoyanovsky’s type subspaces of higher-level standard \(\tilde {\mathfrak {sl}}(l + 1, \mathbb {C})\)-modules. J. Algebra 322, 3744–3774 (2009)MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer Nature B.V. 2018