Higher Jones Algebras and their Simple Modules

  • Henning Haahr AndersenEmail author


Let G be a connected reductive algebraic group over a field of positive characteristic p and denote by \(\mathcal T\) the category of tilting modules for G. The higher Jones algebras are the endomorphism algebras of objects in the fusion quotient category of \(\mathcal T\). We determine the simple modules and their dimensions for these semisimple algebras as well as their quantized analogues. This provides a general approach for determining various classes of simple modules for many well-studied algebras such as group algebras for symmetric groups, Brauer algebras, Temperley–Lieb algebras, Hecke algebras and BMW-algebras. We treat each of these cases in some detail and give several examples.


Tilting modules Cellular algebras Group algebras for symmetric groups Hecke algebras Brauer algebras BMW-algebras 

Mathematics Subject Classification (2010)

20C20 17B37 20G05 20C30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Thanks to the referee for a quick and careful reading as well as for her/his many useful comments and corrections.


  1. 1.
    Andersen, H.H.: The strong linkage principle. J. Reine Ang. Math. 315, 53–59 (1980)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Andersen, H.H.: Tensor products of quantized tilting modules. Comm. Math. Phys. 149, 149–159 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Andersen, H.H.: The strong linkage principle for quantum groups at roots of 1. J. Alg. 260, 2–15 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Andersen, H.H.: Simple modules for Temperley–Lieb algebras and related algebras. J. Alg. 520, 276–308 (2019)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Andersen, H.H., Paradowski, J.: Fusion categories arising from semisimple Lie algebras. Comm. Math. Phys. 169, 563–588 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Andersen, H.H., Polo, P., Kexin, W.: Representations of quantum algebras. Invent. Math. 104, 1–59 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Andersen, H.H., Stroppel, C.: Fusion rings for quantum groups, vol. 17 (2014)Google Scholar
  8. 8.
    Andersen, H.H., Stroppel, C., Tubbenhauer, D.: Cellular structures using Uq-tilting modules. Pac. J. Math. 292, 21–59 (2018)CrossRefzbMATHGoogle Scholar
  9. 9.
    Andersen, H.H., Stroppel, C., Tubbenhauer, D.: Semisimplicity of Hecke and (walled) Brauer algebras. J. Aust. Math. Soc. 103, 1–44 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Brauer, R.: On algebras which are connected with the semisimple continuous groups. Ann. of Math. 38(1937), 857–872 (1937)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Carter, R., Lusztig, G.: On the modular representations of the general linear and symmetric groups. Math. Z. 136, 193–242 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dipper, R., Doty, S., Hu, J.: Brauer algebras, symplectic Schur algebras and Schur–Weyl duality. Trans AMS 360, 189–213 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Donkin, S.: Rational representations of algebraic groups, Lecture Notes in Math 1140. Springer, Berlin (1985)Google Scholar
  14. 14.
    Donkin, S.: On tilting modules for algebraic groups. Math. Z. 212, 39–60 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Doty, S., Hu, J.: Schur–Weyl duality for orthogonal groups. Proc. LMS 98, 679–713 (2008)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Du, J., Parshall, B., Scott, L.: Quantum Weyl reciprocity and tilting modules. Comm. Math. Phys. 195, 321–352 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Goodman, F.M., Wenzl, H.: Littlewood-Richardson coefficients for Hecke algebras at roots of unity. Adv. Math. 82, 244–265 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Graham, J., Lehrer, G.: Cellular algebras. Invent. Math. 123, 1–34 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hu, J.: BMW algebra, quantized coordinate algebra and type C Schur–Weyl duality. Repr. Theory 15, 1–62 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Iohara, K., Lehrer, G.I., Zhang, R.B.: Temperley–Lieb at roots of unity, a fusion category and the Jones quotient. Math Res. Lett. (to appear), online available. arXiv:1707.01196
  21. 21.
    Jantzen, J.C.: Representations of algebraic groups mathematical surveys and monographs, vol. 107. American Mathematical Society, Providence (2003)Google Scholar
  22. 22.
    Kleshchev, A.: Completely splittable representations of symmetric groups. J. Algebra 181, 584–592 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Mathieu, O.: Filtrations of G-modules. Ann. scient. É,c. Norm. Sup. 23, 625–644 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Mathieu, O.: On the dimension of some modular irreducible representations of the symmetric group. Lett. Math. Phys. 38, 23–32 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Wang, J.-P.: Sheaf cohomology on G/B and tensor products of Weyl modules. J. Algebra 77, 162–185 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Wenzl, H.: Hecke algebras of type A n and subfactors. Invent. Math. 92, 349–383 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Wenzl, H.: On the Structure of Brauer’s Centralizer Algebras. Ann. Math. 128, 173–193 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Wenzl, H.: Quantum Groups and Subfactors of Type B, C, and D. Commun. Math. Phys. 133, 383–432 (1990)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Three Gorges Mathematical Research CenterChina Three Gorges UniversityYichangChina

Personalised recommendations