Algebras and Representation Theory

, Volume 22, Issue 1, pp 211–218 | Cite as

Plücker Relations for Quiver Grassmannians

  • Oliver LorscheidEmail author
  • Thorsten Weist


In this text, we exhibit the quiver Plücker relations for a quiver Grassmannian and show that they describe the quiver Grassmannian as a closed subscheme of a product of usual Grassmannians.


Quiver Grassmannians Plücker relations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Caldero, P., Reineke, M.: On the quiver Grassmannian in the acyclic case. J. Pure Appl. Algebra 212(11), 2369–2380 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Hille, L.: Moduli of representations, quiver Grassmannians, and Hilbert schemes. Preprint. arXiv:1505.06008 (2015)
  3. 3.
    Lorscheid, O.: Schubert decompositions for quiver Grassmannians of tree modules. Algebra Number Theory 9(6), 1337–1362 (2015). With an appendix by Thorsten WeistMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Lorscheid, O., Weist, T.: Quiver Grassmannians of type \(\widetilde D_{n}\). Part 1: Schubert systems and decompositions into affine spaces. Accepted by Memoirs of the AMS. arXiv:1507.00392 (2015)
  5. 5.
    Lorscheid O., Weist, T.: Representation type by Euler characteristics and singularities of quiver Grassmannians, Preprint. arXiv:1706.00860 (2017)
  6. 6.
    Reineke, M.: Every projective variety is a quiver grassmannian. Algebr. Represent. Theory 16(5), 1313–1314 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto Nacional de Matemática Pura e AplicadaRio de JaneiroBrazil
  2. 2.Bergische Universität WuppertalWuppertalGermany

Personalised recommendations