Algebras and Representation Theory

, Volume 22, Issue 1, pp 99–140 | Cite as

Dimension Vectors of Indecomposable Objects for Nilpotent Operators of Degree 6 with One Invariant Subspace

  • Piotr DowborEmail author
  • Hagen Meltzer
Open Access


Formulas for the dimension vectors of all objects M in the category \(\mathcal {S}(\tilde {6})\) of nilpotent operators with nilpotency degree bounded by 6, acting on finite dimensional vector spaces with invariant subspaces in a graded sense, are given (Theorem 2.3). For this purpose we realize a tubular algebra Λ, controlling the category \(\mathcal {S}(\tilde {6})\), as an endomorphism algebra of a suitable tilting bundle over a weighted projective line of type (2,3,6) (Theorem 3.6). Using this description and a concept of mono-epi type, the interval multiplicity vector of an object in \(\mathcal {S}(\tilde {6})\) is introduced and determined (Theorem 2.8). This is a much finer invariant than the usual dimension vector.


Nilpotent operator Invariant subspace Submodule category Tubular algebra Dimension vector Interval multiplicity vector Exceptional object Weighted projective line Coherent sheaf Tilting bundle Telescoping functor Mono-epi representation Mono-epi-type 

Mathematics Subject Classification (2010)

16G30 16G20 14F05 47A15 15A04 16D70 16G70 


  1. 1.
    Assem, I., Simson, D., Skowroński, A.: Elements of Representation Theory of Associative Algebras, Volume 1, Techniques of Representation Theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press, Cambridge - New York (2006)Google Scholar
  2. 2.
    Birkhoff, C.: Subgroups of Abelian groups. Proc. Lond. Math. Soc. II. Ser. (1934)Google Scholar
  3. 3.
    Dowbor, P., Hübner, T.: A computer algebra approach to sheaves over weighted projective lines. In: Computational Methods for Representations of Groups and Algebras, Progress in Math. 173, Birhäuser, pp 187–200 (1999)Google Scholar
  4. 4.
    Dowbor, P., Meltzer, H., Mróz, A.: An algorithm for the construction of exceptional modules over tubular canonical algebras. J. Algebra 323(10), 2710–2734 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dowbor, P., Meltzer, H., Schmidmeier, M.: The “0-1-property” of exceptional objects for nilpotent operators of degree 6 with one invariant subspace. Preprint 57 pp., Torun (2017)Google Scholar
  6. 6.
    Gabriel, P.: Unzerlegbare Darstellungen. Manuscripta Math 6, 71–103 (1972). Berichtig Ibid 6 (309)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Geigle, W., Lenzing, H.: A class of weighted projective curves arising in representation theory of finite dimensional algebras. In: Singularities, representations of algebras, and vector bundles. Springer Lecture Notes in Mathematics 1273, pp 265–297 (1987)Google Scholar
  8. 8.
    Happel, D.: Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London. Math. Soc. Lecture Notes Series 119 (1988)Google Scholar
  9. 9.
    Happel, D., Ringel, C.M.: Tilted Algebras. Trans. AMS 274(2), 399–443 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kussin, D., Lenzing, H., Meltzer, H.: Nilpotent operators and weighted projective lines. J. Reine Angew. Math. 685, 33–71 (2013)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Kussin, D., Lenzing, H., Meltzer, H.: Triangle singularities, ADE-chains, and weighted projective lines. Adv. Math. 237, 194–251 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kussin, D., Lenzing, H., Meltzer, H.: Invariant flags for nilpotent operators and weighted projective lines. Preprint, Paderborn (2017)zbMATHGoogle Scholar
  13. 13.
    Kussin, D., Meltzer, H.: Indecomposable modules for domestic canonical algebras. J. Pure Appl. Algebra 211(2), 471–483 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lenzing, H., Meltzer, H.: Sheaves on a weighted projective line of genus one and representations of a tubular algebra. In: Representations of Algebras, Sixth International Conference, Ottawa 1992. CMS Conf. Proc. 14, pp 317–337 (1993)Google Scholar
  15. 15.
    Lenzing, H., Meltzer, H.: Tilting sheaves and concealed-canonical algebras. In: Representation theory of algebras, Seventh International Conference, August 22-26, 1994, Cocoyoc, Mexico. Providence, RI: American Mathematical Society. CMS Conf. Proc. 18, pp 455–473 (1996)Google Scholar
  16. 16.
    Meltzer, H.: Tubular mutations. Colloq. Math. 74(2), 267–274 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Meltzer, H.: Exceptional vector bundles, tilting sheaves and tilting complexes for weighted projective lines. Mem. Am. Math. Soc. 808 (2004)Google Scholar
  18. 18.
    Meltzer, H.: Exceptional modules for tubular canonical algebras. Algebr. Represent. Theory 10(5), 481–497 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ringel, C. M.: Tame algebras and integral quadratic forms. Springer Lecture Notes in Mathematics (1984)Google Scholar
  20. 20.
    Ringel, C. M.: Exceptional modules are tree modules. Linear Algebra Appl. 275-276, 471–493 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ringel, C. M., Schmidmeier, M.: Bounded submodules of modules. J. Pure Appl. Algebra 203, 45–82 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ringel, C. M., Schmidmeier, M.: Submodule categories of wild representation type. J. Pure Appl. Algebra 205, 412–422 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Ringel, C. M., Schmidmeier, M.: Invariant subspaces of nilpotent linear operators. I. J. Reine Angew. Math. 614, 1–52 (2008)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Ringel, C. M., Schmidmeier, M.: The Auslander-Reiten translation in submodule categories. Trans. Am. Math. Soc. 360(2), 691–716 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Simson, D.: Chain categories of modules and subprojective representations of posets over uniserial algebras. Rocky Mt. J. Math. 32(4), 1627–1650 (2002)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Faculty of Mathematics and Computer ScienceNicolaus Copernicus UniversityToruńPoland
  2. 2.Institute of MathematicsSzczecin UniversitySzczecinPoland

Personalised recommendations