Algebras and Representation Theory

, Volume 22, Issue 1, pp 21–41 | Cite as

Fibered p-biset Functor Structure of the Fibered Burnside Rings

  • Olcay CoşkunEmail author
  • Deniz Yılmaz


We determine the composition factors of the A-fibered Burnside functor kBA for p-groups over a field k of characteristic q with qp and cyclic fiber group A. We also show that, in this case, kBA is uniserial.


Fibered biset functors Fibered Burnside ring Monomial Burnside ring 

Mathematics Subject Classification (2010)

19A22 16E20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We would like to thank to the referee for his/her comments and corrections.


  1. 1.
    Barker, L.: Fibred permutation sets and the idempotents and units of monomial Burnside rings. J. Algebra 281, 535–566 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Boltje, R.: A general theory of canonical induction formulae. J. Algebra 206, 293–343 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Boltje, R.: Representation rings of finite groups, their species and idempotent formulae, to appear in J. AlgebraGoogle Scholar
  4. 4.
    Boltje, R., Coşkun, O.: Fibered Biset Functors, arXiv:1612.01117
  5. 5.
    Bouc, S.: Foncteurs d’ensembles munis d’une double action. J. Algebra 183, 664–736 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bouc, S., Thevénaz, J.: The group of endo-permutation modules. Invent. Math. 139, 275–349 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bouc, S.: ‘The Dade group of a p-group’. Invent. Math. 164, 189–231 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bouc, S.: Biset Functors for Finite Groups Lecture Notes in Math., vol. 1990. Springer-Verlag, Berlin (2010)zbMATHGoogle Scholar
  9. 9.
    Dress, A.W.M.: Contributions to Theory of Induced Representations, Lecture Notes in Math., vol. 342, pp 183–240. Springer-Verlag, New York (1973)Google Scholar
  10. 10.
    Dress, A.W.: The ring of monomial representations, I. Structure theory. J. Algebra 18, 137–157 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Green, J.A.: Axiomatic representation theory for finite groups. J. Pure Appl. Algebra 1, 41–771 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Romero, N.: On fibered biset functors with fibres order of prime and four. J. Algebra 387, 185–194 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Thévenaz, J., Webb, P.: The structure of Mackey functors. Trans. Amer. Math. Soc. 347, 1865–1961 (1995)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of MathematicsBoğaziçi UniversityİstanbulTurkey
  2. 2.Department of MathematicsUniversity of California Santa CruzSanta CruzUSA

Personalised recommendations