Algebras and Representation Theory

, Volume 21, Issue 6, pp 1395–1409 | Cite as

On Irreducible Representations of the Zassenhaus Superalgebras with p-Characters of Height 0

  • Yu-Feng YaoEmail author
  • Temuer Chaolu


Let n be a positive integer, and \(\mathfrak {A}(n)=\mathbb {F}[x]/(x^{p^{n}})\), the divided power algebra over an algebraically closed field \(\mathbb {F}\) of prime characteristic p > 2. Let π(n) be the tensor product of \(\mathfrak {A}(n)\) and the Grassmann superalgebra \(\bigwedge (1)\) in one variable. The Zassenhaus superalgebra \(\mathcal {Z}(n)\) is defined to be the Lie superalgebra of the special super derivations of the superalgebra π(n). In this paper we study simple modules over the Zassenhaus superalgebra \(\mathcal {Z}(n)\) with p-characters of height 0. We give a complete classification of the isomorphism classes of such simple modules and determine their dimensions. A sufficient and necessary condition for the irreducibility of Kac modules is obtained.


The Zassenhaus superalgebra Irreducible module p-character Height 

Mathematics Subject Classification 2010

17B10 17B50 17B70 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to express their sincere gratitude to the referee for his/her valuable suggestions and comments which help us to improve the exposition of this paper.


  1. 1.
    Friedlander, E., Parshall, B.: Modular representation theory of Lie algebras. Amer. J. Math. 110, 1055–1094 (1988)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Jantzen, J.C.: Representations of Lie Algebras in Prime Characteristic. In: Broer, A. (ed.) Proceedings of the NATO ASI Representation Theories and Algebraic Geometry, Montreal, 1997, pp. 185–235. Kluwer, Dordrecht (1998)CrossRefGoogle Scholar
  3. 3.
    Liu, W.D., Yuan, J.X.: Automorphism groups of modular graded Lie superalgebras of Cartan-type. J. Algebra Appl. 16(1), 1750050 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Premet, A.: Irreducible representations of Lie algebras of reductive groups and the Kac-Weisfeiler conjecture. Invent. Math. 121, 79–117 (1995)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Shu, B.: The generalized restricted representations of graded Lie algebras of Cartan type. J. Algebra 194, 157–177 (1997)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Shu, B.: Generalized restricted Lie algebras and representations of the Zassenhaus algebra. J. Algebra 204, 549–572 (1998)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Shu, B., Wang, W.Q.: Modular representations of the otho-syplectic supergroups. Proc. London Math. Soc. 96, 251–271 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Shu, B., Yao, Y.F.: Character formulas for restricted simple modules of the special superalgebras. Math. Nachr. 285(8-9), 1107–1116 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Shu, B., Yao, Y.F.: Irreducible representations of the generalized Jacobson-Witt algebras. Algebra Colloq. 19(1), 53–72 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Shu, B., Zhang, C.W.: Representations of the restricted Cartan type Lie superalgebra W(m, n, 1). Algebr. Represent. Theory 14, 463–481 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Strade, H.: Simple Lie Algebras over Fields of Positive Characteristic, I. Structure Theory De Gruyter Expositions in Mathematics, vol. 38. Walter de Gruyter, Berlin (2004)CrossRefGoogle Scholar
  12. 12.
    Strade, H., Farnsteiner, R.: Modular Lie Algebras and Their Representations. Pure and Applied Mathematics, vol. 116. Marcel Dekker, Inc., New York (1988)zbMATHGoogle Scholar
  13. 13.
    Wang, S.J., Liu, W.D.: On restricted representations of restricted contact Lie superalgebras of odd type. J. Algebra Appl. 15(4), 1650075 (14 pages) (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wang, W.Q., Zhao, L.: Representations of Lie superalgebras in prime characteristic I. Proc. Lond. Math. Soc. 99(1), 145–167 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Weisfeiler, B.Y., Kac, V.G.: On irreducible representations of Lie p-algebras. Funct. Anal. Appl. 5, 111–117 (1971)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Yang, H.Y., Yao, Y.F.: On modular representations of finite dimensional Lie superalgebras. J. East China Norm. Univ. (Natur. Sci. Ed.) 2017(3), 1–19 (2017)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Yao, Y.F.: On restricted representations of the extended special type Lie superalgebra \(\bar {S}(m,n,1)\). Monatsh. Math. 170, 239–255 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Yao, Y.F., Shu, B., Li, Y.Y.: Generalized restricted representations of the Zassenhaus superalgebras. J. Algebra 468, 24–48 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Yuan, J.X., Liu, W.D.: Restricted Kac module of Hamiltonian Lie superalgebras of odd type. Monatsh. Math. 178(3), 473–488 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Zhang, Y.Z., Nan, J.Z.: Finite-dimensional Lie superalgebras W(m; n; t) and S(m; n; t) of Cartan type. Chin. Adv. Math. 27(3), 240–246 (1998)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Zhang, Y.Z., Liu, W.D.: Modular Lie Superalgebras (In Chinese). Scientific Press, Beijing (2001)Google Scholar
  22. 22.
    Zheng, L.S., Shu, B.: On representations of \(\mathfrak {g}\mathfrak {l}(m|n)\) and infinitesimal subgroups of G L(m|n). Chinese J. Contemp. Math. 31(2), 107–122 (2010)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of MathematicsShanghai Maritime UniversityShanghaiChina

Personalised recommendations