Advertisement

Algebras and Representation Theory

, Volume 21, Issue 6, pp 1277–1331 | Cite as

A Combinatorial Categorification of the Tensor Product of the Kirillov-Reshetikhin Crystal B 1,1 and a Fundamental Crystal

  • Henry Kvinge
  • Monica Vazirani
Article

Abstract

We use Khovanov-Lauda-Rouquier (KLR) algebras to categorify a crystal isomorphism between a fundamental crystal and the tensor product of a Kirillov-Reshetikhin crystal and another fundamental crystal, all in affine type. The nodes of the Kirillov-Reshetikhin crystal correspond to a family of “trivial” modules. The nodes of the fundamental crystal correspond to simple modules of the corresponding cyclotomic KLR algebra. The crystal operators correspond to socle of restriction and behave compatibly with the rule for tensor product of crystal graphs.

Keywords

KLR algebras Quiver Hecke algebras Crystals Categorification 

Mathematics Subject Classification (2010)

05E10 20C08 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We wish to thank Peter Tingley for interesting discussions and for pointing out we were using KR crystals and not just level 1 perfect crystals. The second author would like to thank David Hill for useful discussions and some initial jump computations.

References

  1. 1.
    Ariki, S., Koike, K.: A Hecke algebra of \((\textbf {Z}/r\textbf {Z})\wr {\mathfrak S}_n\) and construction of its irreducible representations. Adv. Math. 106(2), 216–243 (1994)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Benkart, G., Kang, S.-J., Oh, S.-J., Park, E.: Construction of irreducible representations over Khovanov-Lauda-Rouquier algebras of finite classical type. Int. Math. Res. Not. IMRN (5), 1312–1366. ISSN: 1073-7928 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Broué, M., Malle, G.: Zyklotomische Heckealgebren. Représentations unipotentes génériques et blocs des groupes réductifs finis. Astérisque. (212), 119–189. ISSN: 0303-1179 (1993)Google Scholar
  4. 4.
    Brundan, J., Kleshchev, A.: Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras. Invent. Math. 178(3), 451–484 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brundan, J., Kleshchev, A.: Graded decomposition numbers for cyclotomic Hecke algebras. Adv. Math. 222(6), 1883–1942 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cherednik, I.V.: A new interpretation of Gelfand-Tzetlin bases. Duke Math. J. 54(2), 563–577 (1987)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fourier, G., Okado, M., Schilling, A.: Perfectness of Kirillov-Reshetikhin crystals for nonexceptional types. In: Quantum affine algebras, extended affine Lie algebras, and their applications. Contemp. Math., vol. 506, pp. 127–143. Amer. Math. Soc., Providence (2010)Google Scholar
  8. 8.
    Grojnowski, I.: Affine sl_p controls the representation theory of the symmetric group and related Hecke algebras. arXiv:9907129 (1999)
  9. 9.
    Kac, V.G.: Infinite-dimensional Lie algebras, 2nd edn. Cambridge University Press, Cambridge (1985)zbMATHGoogle Scholar
  10. 10.
    Kang, S.-J., Kashiwara, M.: Quantized affine algebras and crystals with core. Comm. Math. Phys. 195(3), 725–740 (1998)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kang, S.-J., Kashiwara, M.: Categorification of highest weight modules via Khovanov-Lauda-Rouquier algebras. Invent. Math. 190(3), 699–742 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kang, S.-J., Kashiwara, M., Misra, K.C., Miwa, T., Nakashima, T., Nakayashiki, A.: Affine crystals and vertex models. In: Infinite analysis, Part A, B (Kyoto, 1991), Adv. Ser. Math. Phys., vol. 16, World Sci. Publ., River Edge, NJ, pp. 449–484 (1992)Google Scholar
  13. 13.
    Kang, S.-J., Kashiwara, M., Misra, K.C., Miwa, T., Nakashima, T., Nakayashiki, A.: Perfect crystals of quantum affine Lie algebras. Duke Math. J 68 (3), 499–607 (1992)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kashiwara, M.: On crystal bases of the Q-analogue of universal enveloping algebras. Duke Math. J. 63(2), 465–516 (1991)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kashiwara, M.: Bases cristallines. C. R. Acad. Sci. Paris Sér. I Math. 311(6), 277–280 (1990)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Kashiwara, M.: On crystal bases. In: Representations of groups (Banff, AB, 1994), CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, pp. 155–197 (1995)Google Scholar
  17. 17.
    Kashiwara, M., Saito, Y.: Geometric construction of crystal bases. Duke Math. J. 89(1), 9–36 (1997)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Khovanov, M., Lauda, A.D.: A diagrammatic approach to categorification of quantum groups. I. Represent. Theory 13, 309–347 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Khovanov, M., Lauda, A.D.: A diagrammatic approach to categorification of quantum groups II. Trans. Amer. Math. Soc. 363(5), 2685–2700 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kirillov, A.N., Reshetikhin, N.Yu: Representations of Yangians and multiplicities of the inclusion of the irreducible components of the tensor product of representations of simple Lie algebras, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI). Anal. Teor. Chisel i Teor. Funktsii. 160(8), 211–221, 301 (1987)Google Scholar
  21. 21.
    Kleshchev, A.: Modular Representation Theory of Symmetric Groups. arXiv:1405.3326 (2014)
  22. 22.
    Kleshchev, A.S.: Branching rules for modular representations of symmetric groups. I. J. Algebra 178(2), 493–511 (1995)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kvinge, H., Vazirani, M.: Categorifying the tensor product of the Kirillov-Reshetikhin crystal B 1,1 and a fundamental crystal. In: 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), Discrete Math. Theor. Comput. Sci. Proc., AT, pp. 719–730 (2016)Google Scholar
  24. 24.
    Lauda, A.D., Vazirani, M.: Crystals from categorified quantum groups. Adv. Math. 228(2), 803–861 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Lenart, C., Schilling, A.: Crystal energy functions via the charge in types A and C. Math. Z 273(1-2), 401–426 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Losev, I., Webster, B.: On uniqueness of tensor products of irreducible categorifications. Selecta Math. (N.S.) 21(2), 345–377 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Lusztig, G.: Introduction to quantum groups. Modern Birkhäuser Classics, Birkhäuser / Springer, New York (2010). Reprint of the 1994 editionCrossRefGoogle Scholar
  28. 28.
    Okado, M., Schilling, A.: Existence of Kirillov-Reshetikhin crystals for nonexceptional types. Represent. Theory 12, 186–207 (2008)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Rouquier, R.: 2-Kac-Moody algebras, arXiv:0812.5023 (2008)
  30. 30.
    Vazirani, M. : A Hecke theoretic shadow of tensoring the crystal of the basic representation with a level 1 perfect crystal. Unpublished notes (1999)Google Scholar
  31. 31.
    Vazirani, M.: Irreducible modules over the affine Hecke algebra: a strong multiplicity one result. Ph.D. thesis, UC Berkeley (1999)Google Scholar
  32. 32.
    Vazirani, M.: Filtrations on the Mackey decomposition for cyclotomic Hecke algebras. J. Algebra 252(2), 205–227 (2002)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Vazirani, M.: A Hecke theoretic shadow of tensoring the crystal of the basic representation with a level 1 perfect crystal, Mathematisches forschungsinstitut oberwolfach report. Report no. 14/2003 (2003). http://www.mfo.de/occasion/0313/www_view
  34. 34.
    Vazirani, M.: An observation on highest weight crystals. J. Algebra 315(2), 483–501 (2007)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Vazirani, M.: Categorifying the tensor product of a level 1 highest weight and perfect crystal in type A. In: Lie algebras, Lie superalgebras, vertex algebras and related topics, vol. 92. Proc. Sympos. Pure Math. Amer. Math. Soc., Providence, pp. 293–324 (2016)Google Scholar
  36. 36.
    Webster, B.: Knot invariants and higher representation theory I: diagrammatic and geometric categorification of tensor products. arXiv:1001.2020, http://adsabs.harvard.edu/abs/2010arXiv1001.2020W (2010)
  37. 37.
    Webster, B.: Knot invariants and higher representation theory. Mem. Amer. Math. Soc. 250(1191), 1–141 (2017). ISBN: 978-1-4704-2650-7MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Mathematics DepartmentDavisUSA

Personalised recommendations