Algebras and Representation Theory

, Volume 21, Issue 3, pp 605–625 | Cite as

Δ-Filtrations and Projective Resolutions for the Auslander–Dlab–Ringel Algebra

  • Teresa CondeEmail author


The ADR algebra R A of an Artin algebra A is a right ultra strongly quasihereditary algebra (RUSQ algebra). In this paper we study the Δ-filtrations of modules over RUSQ algebras and determine the projective covers of a certain class of R A -modules. As an application, we give a counterexample to a claim by Auslander–Platzeck–Todorov, concerning projective resolutions over the ADR algebra.


Quasihereditary algebra Strongly quasihereditary algebra ADR algebra 

Mathematics Subject Classification (2010)

16S50 16W70 16G10 16G20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Most of this work is contained in the author’s Ph.D. thesis. This was supported by the grant SFRH/BD/84060/2012 of Fundação para a Ciência e a Tecnologia, Portugal. The author would like to express her gratitude to Stephen Donkin, Ph.D. examiner, for the simplified version of the proofs of Lemma 3.2 and Corollary 3.3 included in this article. In addition, the author would like to thank her Ph.D. supervisor, Karin Erdmann, for many useful comments.


  1. 1.
    Auslander, M.: Representation theory of Artin algebras. I, II, Comm. Algebra 1, 177–268 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Auslander, M.: Representation theory of Artin algebras. ibid 1, 269–310 (1974)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Auslander, M., Platzeck, M.I., Todorov, G.: Homological theory of idempotent ideals. Trans. Amer. Math. Soc. 332(2), 667–692 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bican, L., Kepka, T., Nėmec, P.: Rings, modules, and preradicals, Lecture Notes in Pure and Applied Mathematics, vol. 75. Marcel Dekker Inc., New York (1982)zbMATHGoogle Scholar
  5. 5.
    Buan, A.B., Iyama, O., Reiten, I., Scott, J.: Cluster structures for 2-Calabi-Yau categories and unipotent groups. Compos. Math. 145(4), 1035–1079 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Burgess, W.D., Fuller, K.R.: On quasihereditary rings. Proc. Amer. Math. Soc. 106(2), 321–328 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Clark, J., Lomp, C., Vanaja, N., Wisbauer, R.: Lifting modules, Frontiers in Mathematics. Birkhäuser Verlag, Basel (2006). Supplements and projectivity in module theoryzbMATHGoogle Scholar
  8. 8.
    Conde, T.: On certain strongly quasihereditary algebras, Ph.D. thesis. University of Oxford, Oxford (2016)Google Scholar
  9. 9.
    Conde, T.: The quasihereditary structure of the Auslander–Dlab–Ringel algebra. J. Algebra 460, 181–202 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dlab, V., Ringel, C.M.: Every semiprimary ring is the endomorphism ring of a projective module over a quasihereditary ring. Proc. Amer. Math. Soc. 107(1), 1–5 (1989)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Dlab, V., Ringel, C.M.: Filtrations of right ideals related to projectivity of left ideals, Séminaire d’Algèbre Dubreil-Malliavin, Lecture Notes in Math, vol. 1404, pp 95–107. Springer, Berlin (1989)Google Scholar
  12. 12.
    Dlab, V., Ringel, C.M.: Quasi-hereditary algebras. Illinois J. Math. 33(2), 280–291 (1989)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Dlab, V., Ringel, C.M.: The module theoretical approach to quasi-hereditary algebras, Representations of algebras and related topics (Kyoto, 1990), London Math. Soc. Lecture Note Ser., vol. 168, pp 200–224. Cambridge University Press, Cambridge (1992)Google Scholar
  14. 14.
    Donkin, S.: Finite resolutions of modules for reductive algebraic groups. J. Algebra 101(2), 473–488 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Geiß, C., Leclerc, B., Schröer, J.: Cluster algebra structures and semicanonical bases for unipotent groups, (2007). arXiv:0703039
  16. 16.
    Geiß, C., Leclerc, B., Schröer, J.: Kac-Moody groups and cluster algebras. Adv. Math. 228(1), 329–433 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Iyama, O.: Finiteness of representation dimension. Proc. Amer. Math. Soc. 131, 1011–1014 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Iyama, O., Reiten, I.: 2-Auslander algebras associated with reduced words in Coxeter groups. Int. Math. Res. Not. IMRN 8, 1782–1803 (2011)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Lanzilotta, M., Marcos, E., Mendoza, O., Sáenz, C.: On the relative socle for stratifying systems. Comm. Algebra 38(5), 1677–1694 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lin, Y.N., Xi, C.C.: Semilocal modules and quasi-hereditary algebras. Arch. Math. (Basel) 60(6), 512–516 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Martínez-Villa, R.: Algebras stably equivalent to l-hereditary, Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979), Lecture Notes in Math., vol. 832, pp 396–431. Springer, Berlin (1980)Google Scholar
  22. 22.
    Ringel, C.M.: The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences. Math. Z. 208(1), 209–223 (1991). (English)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Ringel, C.M.: Iyama’s finiteness theorem via strongly quasi-hereditary algebras. J. Pure Appl. Algebra 214(9), 1687—1692 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Stenström, B.: Rings of quotients, Springer, New York-Heidelberg, 1975, Die Grundlehren der Mathematischen Wissenschaften, Band 217, An introduction to methods of ring theoryGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Institute of Algebra and Number TheoryUniversity of StuttgartStuttgartGermany

Personalised recommendations