Algebras and Representation Theory

, Volume 20, Issue 2, pp 335–354 | Cite as

Higher Auslander Correspondence for Dualizing R-Varieties

  • Osamu Iyama
  • Gustavo Jasso


Let R be a commutative artinian ring. We extend higher Auslander correspondence from Artin R-algebras of finite representation type to dualizing R-varieties. More precisely, for a positive integer d, we show that a dualizing R-variety is d-abelian if and only if it is a d-Auslander dualizing R-variety if and only if it is equivalent to a d-cluster-tilting subcategory of the category of finitely presented modules over a dualizing R-variety.


Artin algebra Dualizing R-variety Auslander algebra Higher Auslander–Reiten theory Cluster-tilting D-abelian category 

Mathematics Subject Classification (2010)

16G10 18A25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auslander, M.: Coherent functors. In: Proceedings of the Conference on Categorical Algebra (La Jolla, Calif., 1965), pp. 189–231. Springer, New York (1966)Google Scholar
  2. 2.
    Auslander, M.: Representation Dimension of Artin Algebras. Lecture Notes. Queen Mary College, London (1971)Google Scholar
  3. 3.
    Auslander, M., Bridger, M.: Stable Module Theory Memoirs of the American Mathematical Society, No. 94. American Mathematical Society, Providence, R.I. (1969)zbMATHGoogle Scholar
  4. 4.
    Auslander, M., Reiten, I.: Stable equivalence of dualizing R-varieties. Adv. Math. 12(3), 306–366 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Auslander, M., Reiten, I.: k-Gorenstein algebras and syzygy modules. J. Pure Appl. Algebra 92(1), 1–27 (1994). doi: 10.1016/0022-4049(94)90044-2
  6. 6.
    Auslander, M., Reiten, I.: Syzygy modules for Noetherian rings. J. Algebra 183(1), 167–185 (1996). doi: 10.1006/jabr.1996.0212
  7. 7.
    Auslander, M., Smalø, S.O.: Almost split sequences in subcategories. J. Algebra 69(2), 426–454 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Beligiannis, A.: Relative homology, higher cluster-tilting theory and categorified auslander-Iyama correspondence. J. Algebra 444, 367–503 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cartan, H., Eilenberg, S.: Homological Algebra. Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1999)zbMATHGoogle Scholar
  10. 10.
    Darpö, E., Iyama, O.: Selfinjective n-representation-finite algebras. In preparation (2015)Google Scholar
  11. 11.
    Fossum, R.M., Griffith, P.A., Reiten, I.: Trivial Extensions of Abelian Categories. Lecture Notes in Mathematics, vol. 456. Springer, Berlin-New York (1975). Homological algebra of trivial extensions of abelian categories with applications to ring theoryCrossRefGoogle Scholar
  12. 12.
    Geiß, C., Keller, B., Oppermann, S.: n-angulated categories. J. Reine Angew. Math. 675, 101–120 (2013)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Iyama, O.: Symmetry and duality on n-Gorenstein rings. J. Algebra 269(2), 528–535 (2003). doi: 10.1016/S0021-8693(03)00419-8
  14. 14.
    Iyama, O.: τ-categories III: Auslander Orders and Auslander-Reiten quivers. Algebr. Represent. Theory 8(5), 601–619 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Iyama, O.: Auslander correspondence. Adv. Math. 210(1), 51–82 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Iyama, O.: Higher-dimensional auslander–Reiten theory on maximal orthogonal subcategories. Adv. Math. 210(1), 22–50 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Iyama, O.: Auslander–Reiten theory revisited. In: Trends in Representation Theory of Algebras and Related Topics, pp. 349–398. European Mathematical Society (2008)Google Scholar
  18. 18.
    Iyama, O.: Cluster tilting for higher Auslander algebras. Adv. Math. 226(1), 1–61 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Iyama, O., Oppermann, S.: n-representation-finite algebras and n-APR tilting. Trans. Am. Math. Soc. 363(12), 6575–6614 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Iyama, O., Oppermann, S.: Stable categories of higher preprojective algebras. Adv. Math. 244, 23–68 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Iyama, O., Yoshino, Y.: Mutation in triangulated categories and rigid cohen-Macaulay modules. Invent. Math. 172(1), 117–168 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Jasso, G.: n-abelian and n-exact categories. arXiv:1405.7805(2014)
  23. 23.
    Jasso, G., Külshammer, J.: Higher Nakayama Algebras I: Construction. In preparation (2015)Google Scholar
  24. 24.
    Lin, Z.: Right n-angulated categories arising from covariantly finite subcategories. arXiv:1409.2948 (2014)
  25. 25.
    Riedtmann, C.: Algebren, darstellungsköcher, Überlagerungen und zurück. Commentarii Mathematici Helvetici 55(2), 199–224 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Tachikawa, H.: On dominant dimensions of QF-3 algebras. Trans. Amer. Math. Soc. 112(2), 249–266 (1964)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Graduate School of MathematicsNagoya UniversityNagoyaJapan
  2. 2.Mathematisches InstitutUniversität BonnBonnGermany

Personalised recommendations