Advertisement

Algebras and Representation Theory

, Volume 19, Issue 5, pp 1135–1171 | Cite as

Equivariant Degenerations of Spherical Modules: Part II

  • Stavros Argyrios Papadakis
  • Bart Van Steirteghem
Article

Abstract

We determine, under a certain assumption, the Alexeev–Brion moduli scheme M of affine spherical G-varieties with a prescribed weight monoid . In Papadakis and Van Steirteghem (Ann. Inst. Fourier (Grenoble). 62(5) 1765–1809 19) we showed that if G is a connected complex reductive group of type A and is the weight monoid of a spherical G-module, then M is an affine space. Here we prove that this remains true without any restriction on the type of G.

Keywords

Invariant Hilbert scheme Spherical module Spherical variety Equivariant degeneration 

Mathematics Subject Classification (2010)

14M27 14D22 14C05 20G05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexeev, V., Brion, M.: Moduli of affine schemes with reductive group action. J. Algebraic Geom 14(1), 83–117 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Avdeev, R., Cupit-Foutou, S.: On the irreducible components of moduli schemes for affine multiplicity-free varieties. arXiv:1406.1713v2 [math.AG] (2014)
  3. 3.
    Benson, C., Ratcliff, G.: A classification of multiplicity free actions. J. Algebra 181(1), 152–186 (1996). doi: 10.1006/jabr.1996.0113 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bourbaki, N.: Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines Actualités Scientifiques et Industrielles, No. 1337. Hermann, Paris (1968)Google Scholar
  5. 5.
    Bravi, P., Cupit-Foutou, S.: Equivariant deformations of the affine multicone over a flag variety. Adv. Math. 217(6), 2800–2821 (2008). doi: 10.1016/j.aim.2007.11.009 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bravi, P., Van Steirteghem, B.: The moduli scheme of affine spherical varieties with a free weight monoid. Int. Math. Res. Not. IMRN p. 44 pages. doi: 10.1093/imrn/rnv281 (2015)
  7. 7.
    Brion, M.: Introduction to actions of algebraic groups. Les cours du CIRM 1(1), 1–22 (2010). http://ccirm.cedram.org/item?id=CCIRM_2010__1_1_1_0 CrossRefzbMATHGoogle Scholar
  8. 8.
    Brion, M.: Invariant Hilbert schemes. In: Handbook of moduli. Vol. i, adv. Lect. Math. (ALM), vol. 24, pp. 64–117. Int. press, Somerville, MA (2013)Google Scholar
  9. 9.
    Cox, D. A., Little, J. B., Schenck, H. K.: Toric varieties Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Providence, RI (2011)Google Scholar
  10. 10.
    Goodman, R., Wallach, N.R.: Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol. 255. Springer, Dordrecht (2009). doi: 10.1007/978-0-387-79852-3
  11. 11.
    Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. available at http://www.math.uiuc.edu/Macaulay2/
  12. 12.
    Jansou, S., Ressayre, N.: Invariant deformations of orbit closures in \(\mathfrak {sl}(n)\). Represent. Theory 13, 50–62 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Knop, F.: Some remarks on multiplicity free spaces. In: Representation theories and algebraic geometry (Montreal, PQ, 1997), vol. 514, pp 301–317. Kluwer Acad. Publ., Dordrecht (1998)Google Scholar
  14. 14.
    Leahy, A. S.: A classification of multiplicity free representations. J. Lie Theory 8(2), 367–391 (1998)MathSciNetzbMATHGoogle Scholar
  15. 15.
    van Leeuwen, M. A. A., Cohen, A. M., Lisser, B.: LiE, A package for Lie group computations. Computer Algebra Nederland, Amsterdam (1992). http://www-math.univ-poitiers.fr/~maavl/LiE/ Google Scholar
  16. 16.
    Losev, I.V.: Proof of the Knop conjecture. Ann. Inst. Fourier (Grenoble) 59(3), 1105–1134 (2009). http://aif.cedram.org/item?id=AIF_2009__59_3_1105_0 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Luna, D.: Variétés sphériques de type A. Publ. Math. Inst. Hautes Études Sci. 94, 161–226 (2001). doi: 10.1007/s10240-001-8194-0 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Papadakis, S.A., Van Steirteghem, B.: Equivariant degenerations of spherical modules: part II. arXiv:1505.07446v1[math.AG] (2015)
  19. 19.
    Papadakis, S.A., Van Steirteghem, B.: Equivariant degenerations of spherical modules for groups of type A. Ann. Inst. Fourier (Grenoble) 62(5), 1765–1809 (2012). doi: 10.5802/aif.2735. Extended version at arXiv:1008.0911v3[math.AG]MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Tauvel, P., Yu, R. W. T.: Lie algebras and algebraic groups. Springer Monographs in Mathematics. Springer, Berlin (2005)Google Scholar
  21. 21.
    Timashev, D.A.: Homogeneous spaces and equivariant embeddings, Encyclopaedia of Mathematical Sciences, vol. 138. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-18399-7. Invariant Theory and Algebraic Transformation Groups, 8
  22. 22.
    Vinberg, È. B., Popov, V. L.: A certain class of quasihomogeneous affine varieties. Izv. Akad. Nauk SSSR Ser. Mat. 36, 749–764 (1972). English translation in Math. USSR Izv. 6 (1972), 743–758MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Stavros Argyrios Papadakis
    • 1
  • Bart Van Steirteghem
    • 2
  1. 1.Department of MathematicsUniversity of IoanninaIoanninaGreece
  2. 2.Department of MathematicsMedgar Evers College - City University of New YorkBrooklynUSA

Personalised recommendations