Algebras and Representation Theory

, Volume 19, Issue 2, pp 489–509 | Cite as

Standard Monomial Theory for Wonderful Varieties

Article
  • 76 Downloads

Abstract

A general setting for a standard monomial theory on a multiset is introduced and applied to the Cox ring of a wonderful variety. This gives a degeneration result of the Cox ring to a multicone over a partial flag variety. Further, we deduce that the Cox ring has rational singularities.

Keywords

Standard monomial theory Wonderful variety Degeneration Rational singularity 

Mathematics Subject Classification (2010)

Primary 14M27 Secondary 13F50 20G05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexeev, V., Brion, M.: Toric degenerations of spherical varieties. Selecta Math. (N.S.) 10, 453–478 (2004)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Appel, K.: Standard monomials for wonderful group compactifications. J. Algebra 310, 70–87 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bourbaki, N.: Éléments de mathématique, Cap. 4, 5 et 6, Masson. Paris (1981)Google Scholar
  4. 4.
    Boutot, J.-F.: Singularités rationnelles et quotients par les groupes réductifs. Invent. Math. 88(1), 65–68 (1987)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bravi, P., Luna, D.: An introduction to wonderful varieties with many examples of type F 4. J. Algebra 329, 4–51 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Brion, M.: Groupe de Picard et nombres caractéristiques des variétés sphériques. Duke Math. J. 58, 397–424 (1989)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Brion, M.: The total coordinate ring of a wonderful variety. J. Algebra 313, 61–99 (2007)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Chirivì, R.: A note on jeu de taquin. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 10(4), 219–228 (1999)MathSciNetMATHGoogle Scholar
  9. 9.
    Chirivì, R.: LS Algebras and Application to Schubert varieties. Transform. Groups 5, 245–264 (2000)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Chirivì, R.: LS algebras and Schubert varieties. PhD thesis, Scuola Normale Superiore (2000)Google Scholar
  11. 11.
    Chirivì, R.: Deformation and Cohen-Macaulayness of the multicone over the flag variety. Comment. Math. Helv. 76, 436–466 (2001)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Chirivì, R., Littelmann, P., Maffei, A.: Equations defining symmetric varieties and affine Grassmannians Int. Math. Res. Not., pp 291–347 (2009)Google Scholar
  13. 13.
    Chirivì, R., Maffei, A.: The ring of sections of a complete symmetric variety. J. Algebra 261, 310–326 (2003)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Chirivì, R., Maffei, A.: Plücker relations and spherical varieties: application to model varieties. Transform. Groups 19, 979–997 (2014)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    De Concini, C., Procesi, C.: A characteristic free approach to invariant theory. Advances in Math. 21(3), 330–354 (1976)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    De Concini, C., Procesi, C.: Complete symmetric varieties. In: Invariant Theory (Montecatini, 1982), Lecture Notes in Math., vol. 996, pp. 1–44. Springer, Berlin (1983)Google Scholar
  17. 17.
    Dehy, R.: Combinatorial results on Demazure modules. J. Algebra 205, 505–524 (1998)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Doubilet, P., Rota, G., Stein, J.: On the foundations of the combinatorial theory, IX Combinatorial methods in invariant theory. Stud. Appl. Math. 53, 185–216 (1974)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Elkik, R.: Singularités rationnelles et déformations. Invent. Math. 47, 139–147 (1978)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Hodge, W.V.D.: Some enumerative results in the theory of forms. Proc. Cambridge Philos. Soc. 39, 22–30 (1943)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Hodge, W.V.D., Pedoe, D.: Methods of algebraic geometry Vol. II Book III: General theory of algebraic varieties in projective space, Book IV: Quadrics and Grassmann varieties. Reprint of the 1952 original. Cambridge University Press, Cambridge (1994)Google Scholar
  22. 22.
    Kempf, G.R., Ramanathan, A.: Multicones over Schubert varieties. Invent. Math. 87, 353–363 (1987)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Lakshmibai, V., Littelmann, P., Magyar, P.: Standard monomial theory and applications. In: Broer, A. (ed.) Representation Theories and Algebraic Geometry. Kluwer, Norwell, MA (1998)Google Scholar
  24. 24.
    Lakshmibai, V., Seshadri, C.S.: Geometry of G/P-II, The work of De Concini and Procesi and the basic conjectures. Indian Academy of Sciences: Proceedings Part A 87, 1–54 (1978)MathSciNetMATHGoogle Scholar
  25. 25.
    Littelmann, P.: Paths and root operators in representations theory. Ann. Math. 142, 499–525 (1995)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Littelmann, P.: A plactic algebra for semisimple Lie algebras. Adv. Math. 124, 312–331 (1996)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Littelmann, P.: Contracting modules and standard monomial theory for symmetrizable kac-moody algebras. J. Amer. Math. Soc. 11, 551–567 (1998)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Luna, D.: Toute variété magnifique est sphérique. Transform. Groups 1, 249–258 (1996)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Popov, V.L.: Contraction of the actions of reductive algebraic groups. Math. USSR-Sb 58, 311–335 (1987)CrossRefMATHGoogle Scholar
  30. 30.
    Seshadri, C.S.: Seshadri Geometry of G/P. I. Theory of standard monomials for minuscule representations. In: Ramanujam, C.P. (ed.) A Tribute, Tata Institute of Fundamental Research Studies in Mathematics, vol. 8, pp. 207–39. Springer, Berlin (1978)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Dipartimento di Matematica “Guido Castelnuovo”Università di Roma “La Sapienza”RomaItaly
  2. 2.Dipartimento di Matematica e Fisica “Ennio de Giorgi”Università del SalentoMonteroni di Lecce (LE)Italy
  3. 3.Scuola Normale Superiore di PisaPisa (PI)Italy
  4. 4.Dipartimento di MatematicaUniversità di PisaPisa (PI)Italy

Personalised recommendations