Advertisement

Algebras and Representation Theory

, Volume 19, Issue 2, pp 255–276 | Cite as

The Primitive Ideals of some Étale Groupoid C -Algebras

Article

Abstract

We consider the Deaconu–Renault groupoid of an action of a finitely generated free abelian monoid by local homeomorphisms of a locally compact Hausdorff space. We catalogue the primitive ideals of the associated groupoid C -algebra. For a special class of actions we describe the Jacobson topology.

Keywords

C-algebra Primitive ideal Groupoid Irreducible representation 

Mathematics Subject Classification (2010)

Primary 46L05 Secondary 46L45 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anantharaman-Delaroche, C., Renault, J.: Amenable groupoids, Monographies de L’Enseignement Mathématique [Monographs of L’Enseignement Mathématique], vol. 36. L’Enseignement Mathématique, Geneva (2000). With a foreword by Georges Skandalis and Appendix B by E. Germain. MR1799683 (2001m:22005)MATHGoogle Scholar
  2. 2.
    Arveson, W.: An Invitation to C -algebras. Springer, New York (1976). Graduate Texts in Mathematics, No. 39. MR0512360 (58 #23621)CrossRefMATHGoogle Scholar
  3. 3.
    Brown, J., Clark, L.O., Farthing, C., Sims, A.: Simplicity of algebras associated to étale groupoids. Semigroup Forum 88(2), 433–452 (2014). doi: 10.1007/s00233-013-9546-z. MR3189105MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Carlsen, T.M., Kang, S., Shotwell, J., Sims, A.: The primitive ideals of the Cuntz-Krieger algebra of a row-finite higher-rank graph with no sources. J. Funct. Anal. 266(4), 2570–2589 (2014). doi: 10.1016/j.jfa.2013.08.029. MR3150171MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Clark, L.O.: Classifying the types of principal groupoid C -algebras. J. Operator Theory 57(2), 251–266 (2007). MR2328998MathSciNetMATHGoogle Scholar
  6. 6.
    Exel, R.: Non-Hausdorff étale groupoids. Proc. Amer. Math. Soc. 139(3), 897–907 (2011). doi: 10.1090/S0002-9939-2010-10477-X. MR2745642 (2012b:46148)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Exel, R., Renault, J.: Semigroups of local homeomorphisms and interaction groups. Ergodic Theory Dynam. Systems 27(6), 1737–1771 (2007). doi:10.1017/S0143385707000193. MR2371594 (2009k:46124)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Exel, R.: Inverse semigroups and combinatorial C -algebras. Bull. Braz. Math. Soc. (N.S.) 39(2), 191–313 (2008). doi: 10.1007/s00574-008-0080-7. MR2419901 (2009b:46115)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Green, P.: The local structure of twisted covariance algebras. Acta Math. 140 (3-4), 191–250 (1978). MR0493349 (58 #12376)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Hong, J.H., Szymański, W.: The primitive ideal space of the C -algebras of infinite graphs. J. Math. Soc. Japan 56 (1), 45–64 (2004). doi: 10.2969/jmsj/1191418695. MR2023453 (2004j:46088)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    an Huef, A., Raeburn, I.: The ideal structure of Cuntz-Krieger algebras. Ergodic Theory Dynam. Systems 17(3), 611–624 (1997). doi: 10.1017/S0143385797079200. MR1452183 (98k:46098)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Ionescu, M., Williams, D.P.: Irreducible representations of groupoid C -algebras. Proc. Amer. Math. Soc. 137(4), 1323–1332 (2009). MR2465655MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kumjian, A., Pask, D.: Higher rank graph C -algebras. New York J. Math. 6, 1–20 (2000). MR1745529 (2001b:46102)MathSciNetMATHGoogle Scholar
  14. 14.
    Kumjian, A., Pask, D., Raeburn, I., Renault, J.: Graphs, groupoids, and Cuntz-Krieger algebras. J. Funct. Anal. 144(2), 505–541 (1997). MR1432596 (98g:46083)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kumjian, A., Pask, D., Sims, A.: Simplicity of twisted C -algebras of higher-rank graphs. J. Noncommutative Geometry (to appear). (arXiv:http://arxiv.org/abs/1411.3860)
  16. 16.
    Muhly, P.S., Renault, J.N., Williams, D.P.: Equivalence and isomorphism for groupoid C -algebras. J. Operator Theory 17(1), 3–22 (1987). MR88h:46123MathSciNetMATHGoogle Scholar
  17. 17.
    Muhly, P.S., Renault, J.N., Williams, D.P.: Continuous-trace groupoid C -algebras. III. Trans. Amer. Math. Soc. 348(9), 3621–3641 (1996)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Muhly, P.S., Williams, D.P.: Groupoid cohomology and the Dixmier-Douady class. Proc. London Math. Soc. 71(3), 109–134 (1995). doi: 10.1112/plms/s3-71.1.109. MR1327935 (97d:46082)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Muhly, P.S., Williams, D.P.: The Dixmier-Douady class of groupoid crossed products. J. Aust. Math. Soc. 76(2), 223–234 (2004). MR2041246 (2005e:46128)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Muhly, P.S., Williams, D.P.: Renault’s equivalence theorem for groupoid crossed products, NYJM Monographs, vol. 3, p. 87. State University of New York, University at Albany, Albany, NY (2008). Available at http://nyjm.albany.edu:8000/m/2008/3.htm. MR2547343 (2010h:46112)
  21. 21.
    Raeburn, I., Williams, D.P.: Morita equivalence and continuous-trace C -algebras, Mathematical Surveys and Monographs, vol. 60. American Mathematical Society, Providence, RI (1998). MR2000c:46108CrossRefMATHGoogle Scholar
  22. 22.
    Ramsay, A.: The Mackey-Glimm dichotomy for foliations and other Polish groupoids. J. Funct. Anal. 94(2), 358–374 (1990). MR1081649 (93a:46124)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Renault, J.: A groupoid approach to C -algebras, Lecture Notes in Mathematics, vol. 793. Springer, Berlin (1980). MR584266 (82h:46075)Google Scholar
  24. 24.
    Renault, J.: The ideal structure of groupoid crossed product C -algebras. J. Operator Theory 25, 3–36 (1991). With an appendix by Georges Skandalis. MR1191252 (94g:46074)MathSciNetMATHGoogle Scholar
  25. 25.
    Renault, J.: Topological amenability is a Borel property. (arXiv:http://arxiv.org/abs/1302.0636) (2013)
  26. 26.
    Rosales, J.C., García-Sánchez, P. A.: Finitely generated commutative monoids. Nova Science Publishers Inc., Commack (1999). MR1694173 (2000d:20074)MATHGoogle Scholar
  27. 27.
    Sims, A., Whitehead, B., Whittaker, M.F.: Twisted C -algebras associated to finitely aligned higher-rank graphs. Doc. Math. 19, 831–866 (2014). MR3262073MathSciNetMATHGoogle Scholar
  28. 28.
    Spielberg, J.: C -algebras for categories of paths associated to the Baumslag-Solitar groups. J. Lond. Math. Soc. 86(2), 728–754 (2012). doi: 10.1112/jlms/jds025. MR3000828MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Williams, D.P.: Crossed products of C -algebras, Mathematical Surveys and Monographs, vol. 134. American Mathematical Society, Providence, RI (2007). MR2288954 (2007m:46003)Google Scholar
  30. 30.
    Yeend, T.: Topological higher-rank graphs and the C -algebras of topological 1-graphs. In: Operator theory, operator algebras, and applications, Contemp. Math. MR2277214 (2007j:46100), vol. 414, pp 231–244. Amer. Math. Soc., Providence, RI (2006)Google Scholar
  31. 31.
    Yeend, T.: Groupoid models for the C -algebras of topological higher-rank graphs. J. Operator Theory 57 (1), 95–120 (2007). MR2301938 (2008f:46074)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.School of Mathematics and Applied StatisticsUniversity of WollongongWollongongAustralia
  2. 2.Department of MathematicsDartmouth CollegeHanoverUSA

Personalised recommendations