Algebras and Representation Theory

, Volume 19, Issue 1, pp 113–133 | Cite as

Twisted Frobenius Extensions of Graded Superrings

  • Jeffrey Pike
  • Alistair Savage


We define twisted Frobenius extensions of graded superrings. We develop equivalent definitions in terms of bimodule isomorphisms, trace maps, bilinear forms, and dual sets of generators. The motivation for our study comes from categorification, where one is often interested in the adjointness properties of induction and restriction functors. We show that A is a twisted Frobenius extension of B if and only if induction of B-modules to A-modules is twisted shifted right adjoint to restriction of A-modules to B-modules. A large (non-exhaustive) class of examples is given by the fact that any time A is a Frobenius graded superalgebra, B is a graded subalgebra that is also a Frobenius graded superalgebra, and A is projective as a left B-module, then A is a twisted Frobenius extension of B.


Frobenius extension Frobenius algebra Graded superring Graded superalgebra Induction Restriction Adjuction Adjoint functors 

Mathematics Subject Classification (2010)

17A70 16W50 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Khovanov, M.: Nilcoxeter algebras categorify the Weyl algebra. Comm. Algebra 29(11), 5033–5052 (2001). doi: 10.1081/AGB-100106800 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Morita, K.: Adjoint pairs of functors and Frobenius extensions. Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 9, 40–71 (1965)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Nakayama, T., Tsuzuku, T.: On Frobenius extensions. I. Nagoya Math. J. 17, 89–110 (1960)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Rosso, D., Savage, A.: Towers of graded superalgebras categorify the twisted Heisenberg double. J. Pure Appl. Algebra 219(11), 5040–5067 (2015). doi: 10.1016/j.jpaa.2015.03.016 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of OttawaOttawaCanada

Personalised recommendations