Advertisement

Algebras and Representation Theory

, Volume 18, Issue 1, pp 1–33 | Cite as

Ghost Numbers of Group Algebras

  • J. Daniel Christensen
  • Gaohong Wang
Article

Abstract

Motivated by Freyd’s famous unsolved problem in stable homotopy theory, the generating hypothesis for the stable module category of a finite group is the statement that if a map in the thick subcategory generated by the trivial representation induces the zero map in Tate cohomology, then it is stably trivial. It is known that the generating hypothesis fails for most groups. Generalizing work done for p-groups, we define the ghost number of a group algebra, which is a natural number that measures the degree to which the generating hypothesis fails. We describe a close relationship between ghost numbers and Auslander-Reiten triangles, with many results stated for a general projective class in a general triangulated category. We then compute ghost numbers and bounds on ghost numbers for many families of p-groups, including abelian p-groups, the quaternion group and dihedral 2-groups, and also give a general lower bound in terms of the radical length, the first general lower bound that we are aware of. We conclude with a classification of group algebras of p-groups with small ghost number and examples of gaps in the possible ghost numbers of such group algebras.

Keywords

Tate cohomology Stable module category p-group Generating hypothesis Ghost map 

Mathematics Subject Classifications (2010)

Primary 20C20 Secondary 16G70 18E30 20J06 55P99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auslander, M., Reiten, I.: Representation theory of Artin algebras IV. Comm. in Algebra 5(5), 443–518 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Benson, D. J.: Representations and Cohomology I. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  3. 3.
    Benson, D. J., Chebolu, S. K., Christensen, J. D., Mináč, J.: The generating hypothesis for the stable module category of a p-group. J. Algebra 310(1), 428–433 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bondal, A., Van den Bergh, M.: Generators and representability of functors in commutative and noncommutative geometry. Moscow Math. J. 3, 1–36 (2003)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Bohmann, A. M., May, J. P.: A presheaf interpretation of the generalized Freyd conjecture. Theory Appl. Categ. 26(16), 403–411 (2012)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Carlson, J. F.: Modules and group algebras. Lectures in Mathematics, ETH Zürich. Birkhäuser Verlag, Basel (1996). Notes by Ruedi SuterGoogle Scholar
  7. 7.
    Carlson, J. F., Chebolu, S. K., Mináč, J.: Freyd’s generating hypothesis with almost split sequences. Proc. Amer. Math. Soc. 137, 2575–2580 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Chebolu, S. K., Christensen, J. D., Mináč, J.: Groups which do not admit ghosts. Proc. Amer. Math. Soc. 136(4), 1171–1179 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Chebolu, S. K., Christensen, J. D., Mináč, J.: Ghosts in modular representation theory. Adv. Math. 217(6), 2782–2799 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Chebolu, S. K., Christensen, J. D., Mináč, J.: Freyd’s generating hypothesis for groups with periodic cohomology. Can. Math. Bull. 55(1), 48–59 (2012)CrossRefzbMATHGoogle Scholar
  11. 11.
    Christensen, J. D.: Ideals in triangulated categories: phantoms, ghosts and skeleta. Adv. Math. 136(2), 284–339 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Christensen, J. D., Wang, G.: Ghost numbers of group algebras II. Preprint (2013). arXiv:1310.5682
  13. 13.
    Freyd, P.: Stable homotopy. In: Proceeding Conference Categorical Algebra (La Jolla, California 1965), pp 121–172. Springer, New York (1966)Google Scholar
  14. 14.
    Jennings, S. A.: The structure of the group ring of a p-group over a modular field. Trans. Amer. Math. Soc. 50, 175–185 (1941)MathSciNetGoogle Scholar
  15. 15.
    Krause, H.: Auslander-Reiten theory via Brown representability. K-Theory 20(4), 331–344 (2000)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Western OntarioLondonCanada

Personalised recommendations