Advertisement

Algebras and Representation Theory

, Volume 17, Issue 5, pp 1603–1613 | Cite as

On Auslander-Reiten Components and Height Zero Lattices for Integral Group Rings

  • Shigeto KawataEmail author
Article
  • 96 Downloads

Abstract

Let 𝒪 G be the group ring of a finite group G over a complete discrete valuation ring 𝒪. Then certain 𝒪 G-lattices of height zero lie at the ends of their Auslander-Reiten components of tree class A .

Keywords

Auslander-Reiten quivers Representations of finite groups 

Mathematics Subject Classifications (2010)

16G70 20C10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras 1: Techniques of Representation Theory, London Math. Soc. Student Texts 65. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  2. 2.
    Auslander, M., Carlson, J.F.: Almost-split sequences and group rings. J. Algebra 103, 122–140 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Auslander, M., Reiten, I., Smalø, S.: Representation Theory of Artin Algebras, Cambridge Studies in Advanced Math, 36. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  4. 4.
    Benson, D.J.: Representations and Cohomology I, Cambridge Studies in Advanced Math, 30. Cambridge University Press, Cambridge (1991)CrossRefGoogle Scholar
  5. 5.
    Carlson, J.F., Jones, A.: An exponential property of lattices over group rings. J. London Math. Soc. 39, 467–479 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dieterich, E.: Representation types of group rings over complete discrete valuation rings II. In: Reiner, I., Roggenkamp, K.W. (eds.) Orders and Their Applications (Oberwolfach, 1984), Lecture Notes in Math. vol. 1142, pp. 112–125. Springer, Berlin (1985)Google Scholar
  7. 7.
    Geline, M., Mazza, N.: Auslander-Reiten components for some Knörr lattices. Bull. Lond. Math. Soc. 45, 800–810 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Happel, D., Preiser, U., Ringel, C.L.: Vinberg’s characterization of Dynkin diagrams using subadditive functions with applications to DTr-periodic modules. Dlab, V., Gabriel, P. (eds.) Representation Theory II (Ottawa, 1979), Lecture Notes in Math. vol. 832, pp. 280–294. Springer, Berlin (1980)Google Scholar
  9. 9.
    Inoue, T., Hieda, Y.: A note on Auslander-Reiten quivers for integral group rings. Osaka J. Math. 32, 483–494 (1995)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Jones, A., Kawata, S., Michler, G.O.: On exponents and Auslander-Reiten components of irreducible lattices. Arch. Math. (Basel) 76, 91–94 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kawata, S.: On Heller lattices over ramified extended orders. J. Pure Appl. Algebra 202, 55–71 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kawata, S.: On Auslander-Reiten components and Heller lattices for integral group rings. Algebra Represent. Theory 9, 513–524 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kawata, S.: Erratum to “On Heller lattices over ramified extended orders”. J. Pure Appl. Algebra 212, 1849–1851 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kawata, S.: On Auslander-Reiten components and trivial source lattices for integral group rings. J. Algebra 322, 1395–1405 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kawata, S.: On Auslander-Reiten components and splitting trace lattices for integral group rings. J. Algebra 359, 69–79 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Knörr, R.: Virtually irreducible lattices. Proc. London Math. Soc. 59(3), 99–132 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Nagao, H., Tsushima, Y.: Representations of Finite Groups. Academic Press, Boston (1989)zbMATHGoogle Scholar
  18. 18.
    Thévenaz, J.: Duality in G-algebras. Math. Z. 200, 47–85 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Thévenaz, J.: G-Algebras and Modular Representation Theory. Clarendon Press, Oxford (1995)zbMATHGoogle Scholar
  20. 20.
    Webb, P.J.: The Auslander-Reiten quiver of a finite group. Math. Z. 179, 97–121 (1982)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of MathematicsOsaka City UniversityOsakaJapan

Personalised recommendations