Advertisement

Algebras and Representation Theory

, Volume 17, Issue 3, pp 885–903 | Cite as

Derived Equivalences for Φ-Cohen–Macaulay Auslander–Yoneda Algebras

  • Shengyong PanEmail author
Article

Abstract

In this paper, we introduce a class of algebras called Φ-Cohen–Macaulay Auslander–Yoneda algebras with Φ an admissible set of ℕ, and construct derived equivalences between these Φ-Cohen–Macaulay Auslander–Yoneda algebras from a given derived equivalence.

Keywords

Derived equivalence Φ-Cohen–Macaulay Auslander–Yoneda algebra 

Mathematics Subject Classifications (2010)

18E30 16G10 16S10 18G15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amoit, C., Oppermann, S.: Cluster equivalence and graded derived equivalence. http://arxiv.org/abs/1003.4916 (2010). Accessed 25 Mar 2010
  2. 2.
    Amoit, C., Oppermann, S.: The image of the derived category in the cluster category. Int. Math. Res. Not. 4, 733–760 (2013)Google Scholar
  3. 3.
    Auslander, M., Reiten, I., Smalø, S.O.: Representation Thoery of Artin Algebras. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  4. 4.
    Beligiannis, A.: Cohen–Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras. J. Algebra 288, 137–211 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Buan, A., Marsh, R., Reineke, M., Reiten, I., Todorov, G.: Tilting theory and cluster combinatorics. Adv. Math. 204, 572–618 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Buchweitz, R.O.: Maximal Cohen–Macaulay modules and Tate cohomology over Gorenstein rings. Unpulished Manuscript, pp. 155. htpps://tspace.library.utorono.ca/handle/1807/16682 (1987)
  7. 7.
    Chen, H.X., Pan, S.Y., Xi, C.C.: Inductions and restrictions for stable equivalences of Morita type. J. Pure Appl. Algebra 216, 643–661 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Chen, X.W.: Gorenstein homological algebra of Artin algebras. Postdoctoral Report, USTC (2010)Google Scholar
  9. 9.
    Christensen, L.W., Holm, H.: Algebras that satisfy Auslander’s condition on vanishing of cohomology. Math. Z. 265, 21–40 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Diveris, K., Purin, M.: A generalization of the Auslander–Reiten conjecture for the bounded derived category. Arch. Math. 98, 507–511 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Dugas, A.: A construction of derived equivalent pairs of symmetric algebras. http://arxiv.org/abs/1005.5152v2 (2010). Accessed 27 May 2010
  12. 12.
    Green, E.L., Martínez-Villa, R.: Koszul and Yoneda algebras. In: Representation Theory of Algebras (Cocoyoc, 1994). CMS Conf. Proc., vol. 18, pp. 247–297. Amer. Math. Society, Providence, RI (1996)Google Scholar
  13. 13.
    Happel, D.: Triangulated Categories in the Representation Theory of Finite Dimensional Algebras. Cambridge University Press, Cambridge (1988)CrossRefzbMATHGoogle Scholar
  14. 14.
    Happel, D.: On Gorenstein algebras. In: Representation Theory of Finite Groups and Finite Dimensional Algebras (Proc. Conf. at Bielefeld, 1991). Progress in Math., vol. 95, pp. 389–404. Birkhäuser, Basel (1991)Google Scholar
  15. 15.
    Happel, D.: Homological conjectures in representation theory of finite dimensional algebras. Sherbrook Lecture Notes Series. http://www.math.ntnu.no/~oyvinso/Nordfjordeid/Program/references.html (1991)
  16. 16.
    Hartshorne, R.: Residues and duality. In: Lecture Notes in Math., vol. 20. Springer-Verlag (1966)Google Scholar
  17. 17.
    Hu, W., Koenig, S., Xi, C.C.: Derived eqivalences from cohomological approximations, and mutations of perforated Yoneda algebras. Proc. Roy. Soc. Edinburgh Sect. A (2013, to appear)Google Scholar
  18. 18.
    Hu, W., Xi, C.C.: \(\mathcal{D}\)-split sequences and derived equivalences. Adv. Math. 227, 292–318 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Hu, W., Xi, C.C.: Derived equivalences and stable equivalences of Morita type, I. Nagoya Math. J. 200, 107–152 (2010)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Hu, W., Xi, C.C.: Derived equivalences for Φ-Auslander–Yoneda algebras. Trans. Am. Math. Soc. (2013, to appear). doi: 10.1090/S0002-9947-2013-05688-7
  21. 21.
    Jorgensen, D.A., Şega, L.M.: Independence of the total reflexivity conditions for modules. Algebr. Represent. Theor. 9, 217–226 (2006)CrossRefzbMATHGoogle Scholar
  22. 22.
    Keller, B.: Deriving DG categories. Ann. Sci. Ec. Norm. Super. 27, 63–102 (1994)zbMATHGoogle Scholar
  23. 23.
    Keller, B.: Invariance and localization for cyclic homology of DG algebras. J. Pure Appl. Algebra 123, 223–273 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Krause, H.: The stable derived category of a noetherian sheme. Compos. Math. 141, 1128–1162 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Neeman, A.: Triangulated Categories. Annals of Mathematics Studies, vol. 148. Princeton University Press, Princeton and Oxford (2001)Google Scholar
  26. 26.
    Pan, S.Y.: Derived equivalences for Cohen–Macaulay Auslander algebras. J. Pure Appl. Algebra 216, 355–363 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Pan, S.Y.: Generalized Auslander–Reiten conjecture and derived equivalences. Commun. Algebra (2013, to appear). doi: 10.1080/00927872.2012.674591
  28. 28.
    Pan, S.Y., Xi, C.C.: Finiteness of finitistic dimension is invariant under derived equivalences. J. Algebra 322, 21–24 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Rickard, J.: Morita theory for derived categories. J. Lond. Math. Soc. 39, 436–456 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Rickard, J.: Derived categories and stable equivalence. J. Pure Appl. Algebra 61, 303–317 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Rickard, J.: Derived equivalences as derived functors. J. Lond. Math. Soc. 43, 37–48 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Verdier, J.: Catégories dérivées, état 0. In: Lecture Notes in Math., vol. 569, pp. 262–311. Springer, Berlin (1977)Google Scholar
  33. 33.
    Wei, J.Q.: Derived categories and syzygies. http://arxiv.org/abs//1109.6226 (2011). Accessed 28 Sep 2011

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of MathematicsBeijing Jiaotong UniversityBeijingPeople’s Republic of China

Personalised recommendations