Algebras and Representation Theory

, Volume 17, Issue 1, pp 1–30 | Cite as

Derived Equivalence of Surface Algebras in Genus 0 via Graded Equivalence

Article
  • 148 Downloads

Abstract

We determine some of the derived equivalences of a class of gentle algebras called surface algebras. These algebras are constructed from an unpunctured Riemann surface of genus 0 with boundary and marked points by introducing cuts in internal triangles of an arbitrary triangulation of the surface. In particular, we fix a triangulation of a surface and determine when different cuts produce derived equivalent algebras.

Keywords

Derived equivalence Graded equivalence Triangulated surfaces Quiver representations 

Mathematics Subject Classifications (2010)

16G20 13D09 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amiot, C.: Cluster categories for algebras of global dimension 2 and quivers with potential. Université de Grenoble. Ann. Inst. Fourier 59(6), 2525–2590 (2009)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Amiot, C., Oppermann, S.: Cluster Equivalence and Graded Derived Equivalence (2010)Google Scholar
  3. 3.
    Amiot, C., Oppermann, S.: Algebras of Acyclic Cluster Type: Tree Case and Case \(\tilde\AA\) (2012)Google Scholar
  4. 4.
    Assem, I., Brüstle, T., Charbonneau-Jodoin, G., Plamondon, P.G.: Gentle algebras arising from surface triangulations. Algebra Number Theory 4(2), 201–229 (2010). doi:10.2140/ant.2010.4.201 CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Assem, I., Schiffler, R., Shramchenko, V.: Cluster automorphisms. Proc. Lond. Math. Soc. 104(6), 1271–1302 (2012). doi:10.1112/plms/pdr049 CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Avella-Alaminos, D., Geiss, C.: Combinatorial derived invariants for gentle algebras. J. Pure Appl. Algebra 212(1), 228–243 (2008)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Barot, M., Fernández, E., Platzeck, M.I., Pratti, N.I., Trepode, S.: From iterated tilted algebras to cluster-tilted algebras. Adv. Math. 223(4), 1468–1494 (2010)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Bobinski, G., Buan, A.B.: The Algebras Derived Equivalent to Gentle Cluster Tilted Algebras (2010)Google Scholar
  9. 9.
    Brüstle, T., Zhang, J.: On the Cluster Category of a Marked Surface (2010)Google Scholar
  10. 10.
    Buan, A.B., Marsh, R., Reineke, M., Reiten, I., Todorov, G.: Tilting theory and cluster combinatorics. Adv. Math. 204(2), 572–618 (2006)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Caldero, P., Chapoton, F., Schiffler, R.: Quivers with relations arising from clusters (A n case). Trans. Am. Math. Soc. 358(3), 1347–1364 (2006)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    David-Roesler, L., Schiffler, R.: Algebras from surfaces without punctures. J. Algebra 350(1), 218–244 (2012). doi:10.1016/j.jalgebra.2011.10.034 CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Derksen, H., Weyman, J., Zelevinsky, A.: Quivers with potentials and their representations. I. Mutations. Sel. Math. (N.S.) 14(1), 59–119 (2008). doi:10.1007/s00029-008-0057-9 CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Fomin, S., Shapiro, M., Thurston, D.: Cluster algebras and triangulated surfaces. I. Cluster complexes. Acta Math. 201(1), 83–146 (2008)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Green, E.L., Marcos, E.N.: Graded quotients of path algebras: a local theory. J. Pure Appl. Algebra 93(2), 195–226 (1994)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Labardini-Fragoso, D.: Quivers with potentials associated to triangulated surfaces. Proc. Lond. Math. Soc. (3) 98(3), 797–839 (2009). doi:10.1112/plms/pdn051 CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Ladkani, S.: Mutation Classes of Certain Quivers with Potentials as Derived Equivalence Classes (2011)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.University of ConnecticutStorrsUSA

Personalised recommendations