Algebras and Representation Theory

, Volume 15, Issue 1, pp 195–200 | Cite as

Rings of Idempotent Stable Range One

  • Zhou Wang
  • Jianlong Chen
  • Dinesh Khurana
  • Tsit-Yuen Lam
Open Access
Article

Abstract

We show that in a ring of stable range 1, any (von Neumann) regular element is clean. Our main results also imply that any unit-regular ring has idempotent stable range 1 (and is therefore clean), and that a semilocal ring has idempotent stable range 1 if and only if it is semiperfect.

Keywords

Idempotent stable range one Stable range one Regular elements Unit regular rings Clean rings 

Mathematics Subject Classifications (2010)

16D70 16E50 

References

  1. 1.
    Anderson, F., Fuller, K.: Rings and Categories of Modules. Graduate Texts in Math., vol. 13. Springer, Berlin-Heidelberg, New York (1992)CrossRefMATHGoogle Scholar
  2. 2.
    Camillo, V., Khurana, D.: A characterization of unit regular rings. Commun. Algebra 29, 2293–2295 (2001)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Chen, H.: Rings with many idempotents. Int. J. Math. 22, 547–558 (1999)CrossRefMATHGoogle Scholar
  4. 4.
    Fuchs, L.: On a substitution property of modules. Monatsh. Math. 75, 198–204 (1971)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Kaplansky, I.: Bass’s first stable range condition. Mimeographed notes (1971)Google Scholar
  6. 6.
    Khurana, D., Lam, T.Y.: Clean matrices and unit-regular matrices. J. Algebra 280, 683–698 (2004)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Khurana, D., Lam, T.Y.: Rings with internal cancellation (with an Appendix by R.G. Swan). J. Algebra 284, 203–235 (2005)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Lam, T.Y.: A first course in noncommutative rings, 2nd edn. In: Graduate Texts in Math., vol. 131. Springer, Berlin-Heidelberg, New York (2001)CrossRefMATHGoogle Scholar
  9. 9.
    Lam, T.Y.: A crash course on stable range, cancellation, substitution, and exchange. J. Algebra and Its Appl. 3, 301–343 (2004)CrossRefMATHGoogle Scholar
  10. 10.
    Nicholson, W.K.: Lifting idempotents and exchange rings. Trans. Am. Math. Soc. 229, 269–278 (1977)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Vaserstein, L.N.: Bass’s first stable range condition. J. Pure Appl. Algebra 34, 319–330 (1984)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Warfield, R.B.: Cancellation of modules and groups and stable range of endomorphism rings. Pac. J. Math. 91, 457–485 (1980)MATHMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • Zhou Wang
    • 1
  • Jianlong Chen
    • 1
  • Dinesh Khurana
    • 2
  • Tsit-Yuen Lam
    • 3
  1. 1.Department of MathematicsSoutheast UniversityNanjingPeople’s Republic of China
  2. 2.Faculty of MathematicsIndian Inst. of Sci. Edu. & Res.ChandigarhIndia
  3. 3.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations