Algebras and Representation Theory

, Volume 15, Issue 2, pp 379–389 | Cite as

Alternating and Sporadic Simple Groups are Determined by Their Character Degrees

Article

Abstract

Let G be a finite group. Denote by Irr(G) the set of all irreducible complex characters of G. Let cd(G) be the set of all irreducible complex character degrees of G forgetting multiplicities, that is, cd(G) = {χ(1) : χ ∈ Irr(G)} and let cd*(G) be the set of all irreducible complex character degrees of G counting multiplicities. Let H be an alternating group of degree at least 5, a sporadic simple group or the Tits group. In this paper, we will show that if G is a non-abelian simple group and \(cd(G)\subseteq cd(H)\) then G must be isomorphic to H. As a consequence, we show that if G is a finite group with \(cd^*(G)\subseteq cd^*(H)\) then G is isomorphic to H. This gives a positive answer to Question 11.8 (a) in (Unsolved problems in group theory: the Kourovka notebook, 16th edn) for alternating groups, sporadic simple groups or the Tits group.

Keywords

Character degree Simple group 

Mathematics Subject Classification (2010)

20C15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balog, A., Bessenrodt, C., Olsson, J., Ono, K.: Prime power degree representations of the symmetric and alternating groups. J. Lond. Math. Soc. (2) 64(2), 344–356 (2001)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups. Oxford University Press, Eynsham (1985)MATHGoogle Scholar
  3. 3.
    Hagie, M.: The prime graph of a sporadic simple group. Commun. Algebra 31(9), 4405–4424 (2003)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Herzog, M.: On finite simple groups of order divisible by three primes only. J. Algebra 10, 383–388 (1968)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Huppert, B.: Some simple groups which are determined by the set of their character degrees. I. Ill. J. Math. 44(4), 828–842 (2000)MathSciNetMATHGoogle Scholar
  6. 6.
    Huppert, B.: Some simple groups which are determined by the set of their character degrees. II. Rend. Semin. Mat. Univ. Padova 115, 1–13 (2006)MathSciNetMATHGoogle Scholar
  7. 7.
    Isaacs, M. Character Theory of Finite Groups. Corrected Reprint of the 1976 Original, Academic Press, New York. AMS Chelsea Publishing, Providence, RI (2006)Google Scholar
  8. 8.
    James, G.: On the minimal dimensions of irreducible representations of symmetric groups. Math. Proc. Camb. Philos. Soc. 94(3), 417–424 (1983)MATHCrossRefGoogle Scholar
  9. 9.
    Lübeck, F.: Smallest degrees of representations of exceptional groups of Lie type. Commun. Algebra 29(5), 2147–2169 (2001)MATHCrossRefGoogle Scholar
  10. 10.
    Lusztig, G.: On the representations of reductive groups with disconnected centre. Orbites unipotentes et représentations, I. Astérisque 10(168), 157–166 (1988)MathSciNetGoogle Scholar
  11. 11.
    Malle, G.: Almost irreducible tensor squares. Commun. Algebra 27(3), 1033–1051 (1999)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Malle, G., Zalesskii, A.: Prime power degree representations of quasi-simple groups. Arch. Math. (Basel) 77(6), 461–468 (2001)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Manz, O., Staszewski, R., Willems, W.: On the number of components of a graph related to character degrees. Proc. Am. Math. Soc. 103(1), 31–37 (1988)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Michler, G.: Brauer’s conjectures and the classification of finite simple groups. Representation Theory, II (Ottawa, Ont., 1984). Lecture Notes in Math. pp. 129–142, vol. 1178. Springer, Berlin (1986)Google Scholar
  15. 15.
    Mazurov, V.D., Khukhro, E.I. (eds.): Unsolved Problems in Group Theory, The Kourovka Notebook, No. 16. Russian Academy of Sciences Siberian Division, Institute of Mathematics, Novosibirsk (2006)Google Scholar
  16. 16.
    Rasala, R.: On the minimal degrees of characters of S n. J. Algebra 45(1), 132–181 (1977)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Roger Carter, W.: Finite Groups of Lie Type. Conjugacy Classes and Complex Characters. Pure and Applied Mathematics (New York). A Wiley-Interscience Publication. Wiley, New York (1985)Google Scholar
  18. 18.
    The GAP Group, GAP—Groups: Algorithms, and Programming, Version 4.4.10, http://www.gap-system.org (2007)
  19. 19.
    Wakefield, T.: Verifying Huppert’s conjecture for \({}^2G_2(q^2)\). Algebr. Represent. Theory. doi:10.1007/s10468-009-9206-x (2009)Google Scholar
  20. 20.
    Wakefield, T.: Verifying Huppert’s conjecture for PSL 3(q) and \(PSU_3(q^2)\). Commun. Algebra 37(8), 2887–2906 (2009)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of KwaZulu-NatalPietermaritzburgSouth Africa

Personalised recommendations