Algebras and Representation Theory

, Volume 15, Issue 2, pp 233–271

Parabolically Induced Representations of Graded Hecke Algebras

Open Access
Article

Abstract

We study the representation theory of graded Hecke algebras, starting from scratch and focusing on representations that are obtained by induction from a discrete series representation of a parabolic subalgebra. We determine all intertwining operators between such parabolically induced representations, and use them to parametrize the irreducible representations. Finally we describe the spectrum of a graded Hecke algebra as a topological space.

Keywords

Graded Hecke algebras Affine Hecke algebras Intertwining operators 

Mathematics Subject Classification (2010)

20C08 

References

  1. 1.
    Barbasch, D., Moy, A.: Reduction to real infinitesimal character in affine Hecke algebras. J. Am. Math. Soc. 6(3), 611–635 (1993)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Barbasch, D., Moy, A.: Unitary spherical spectrum for p-adic classical groups. Acta Appl. Math. 44, 3–37 (1996)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Curtis, C., Reiner, I.: Representation theory of finite groups and associative algebras. Pure and Applied Mathematics, vol. 11. Wiley (1962)Google Scholar
  4. 4.
    Delorme, P., Opdam, E.: The Schwartz algebra of an affine Hecke algebra. J. Reine Angew. Math 625, 59–114 (2008)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Delorme, P., Opdam, E.: Analytic R-groups of affine Hecke algebras. J. Reine Angew. Math. (2010, to appear). arXiv:0909.1227
  6. 6.
    Evens, S.: The Langlands classification for graded Hecke algebras. Proc. Am. Math. Soc. 124(4), 1285–1290 (1996)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Gyoja, A.: Modular representation theory over a ring of higher dimension with applications to Hecke algebras. J. Algebra 174(2), 553–572 (1995)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Heckman, G., Opdam, E.: Yang’s system of particles and Hecke algebras. Ann. Math. 145(1), 139–173 (1997)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Howlett, R.B.: Normalizers of parabolic subgroups of reflection groups. J. Lond. Math. Soc. 21(2), 62–80 (1980)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Humphreys, J.E.: Reflection groups and Coxeter groups. Cambridge Studies in Advanced Mathematics, vol. 29. Cambridge University Press (1990)Google Scholar
  11. 11.
    Kriloff, C.: Some interesting nonspherical tempered representations of graded Hecke algebras. Trans. Am. Math. Soc. 351(11), 4411–4428 (1999)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Kriloff, C., Ram, A.: Representations of graded Hecke algebras. Representat. Theory 6, 31–69 (2002)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Langlands, R.P.: On the classification of irreducible representations of real algebraic groups. In: Representation Theory and Harmonic Analysis on Semisimple Lie groups. Math. Surveys Monogr. vol. 31, pp. 101–170. American Mathematical Society (1989)Google Scholar
  14. 14.
    Lusztig, G.: Affine Hecke algebras and their graded version. J. Am. Math. Soc 2(3), 599–635 (1989)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Lusztig, G.: Classification of unipotent representations of simple p-adic groups. Int. Math. Res. Not. 11, 517–589 (1995)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lusztig, G.: Cuspidal local systems and graded Hecke algebras III. Representat. Theory 6, 202–242 (2002)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Macdonald, I.G.: Polynomial functors and wreath products. J. Pure Appl. Algebra 18.2, 173–204 (1980)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Opdam, E.: Harmonic analysis for certain representations of graded Hecke algebras. Acta Math. 175, 75–121 (1995)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Opdam, E.: On the spectral decomposition of affine Hecke algebras. J. Inst. Math. Jussieu 3(4), 531–648 (2004)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Opdam, E., Solleveld, M.: Homological algebra for affine Hecke algebras. Adv. Math. 220, 1549–1601 (2009)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Opdam, E., Solleveld, M.: Discrete series characters for affine Hecke algebras and their formal degrees. Acta Math 205, 105–187 (2010)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Ram, A., Rammage, J.: Affine Hecke algebras, cyclotomic Hecke algebras and Clifford theory. In: A Tribute to C.S. Seshadri (Chennai 2002). Trends in Mathematics, pp. 428–466. Birkhäuser (2003)Google Scholar
  23. 23.
    Slooten, K.: Generalized Springer correspondence and Green functions for type B/C graded Hecke algebras. Adv. Math. 203, 34–108 (2005)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Solleveld, M.: Periodic Cyclic Homology of Affine Hecke Algebras. Ph.D. Thesis, Universiteit van Amsterdam (2007). arXiv:0910.1606
  25. 25.
    Solleveld, M.: Periodic cyclic homology of reductive p-adic groups. J. Noncommut. Geom. 3(4), 501–558 (2009)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Solleveld, M.: Homology of graded Hecke algebras. J. Algebra 323, 1622–1648 (2010)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Mathematisches InstitutGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations