Advertisement

Algebras and Representation Theory

, Volume 15, Issue 2, pp 233–271 | Cite as

Parabolically Induced Representations of Graded Hecke Algebras

  • Maarten Solleveld
Open Access
Article

Abstract

We study the representation theory of graded Hecke algebras, starting from scratch and focusing on representations that are obtained by induction from a discrete series representation of a parabolic subalgebra. We determine all intertwining operators between such parabolically induced representations, and use them to parametrize the irreducible representations. Finally we describe the spectrum of a graded Hecke algebra as a topological space.

Keywords

Graded Hecke algebras Affine Hecke algebras Intertwining operators 

Mathematics Subject Classification (2010)

20C08 

References

  1. 1.
    Barbasch, D., Moy, A.: Reduction to real infinitesimal character in affine Hecke algebras. J. Am. Math. Soc. 6(3), 611–635 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Barbasch, D., Moy, A.: Unitary spherical spectrum for p-adic classical groups. Acta Appl. Math. 44, 3–37 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Curtis, C., Reiner, I.: Representation theory of finite groups and associative algebras. Pure and Applied Mathematics, vol. 11. Wiley (1962)Google Scholar
  4. 4.
    Delorme, P., Opdam, E.: The Schwartz algebra of an affine Hecke algebra. J. Reine Angew. Math 625, 59–114 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Delorme, P., Opdam, E.: Analytic R-groups of affine Hecke algebras. J. Reine Angew. Math. (2010, to appear). arXiv:0909.1227
  6. 6.
    Evens, S.: The Langlands classification for graded Hecke algebras. Proc. Am. Math. Soc. 124(4), 1285–1290 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Gyoja, A.: Modular representation theory over a ring of higher dimension with applications to Hecke algebras. J. Algebra 174(2), 553–572 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Heckman, G., Opdam, E.: Yang’s system of particles and Hecke algebras. Ann. Math. 145(1), 139–173 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Howlett, R.B.: Normalizers of parabolic subgroups of reflection groups. J. Lond. Math. Soc. 21(2), 62–80 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Humphreys, J.E.: Reflection groups and Coxeter groups. Cambridge Studies in Advanced Mathematics, vol. 29. Cambridge University Press (1990)Google Scholar
  11. 11.
    Kriloff, C.: Some interesting nonspherical tempered representations of graded Hecke algebras. Trans. Am. Math. Soc. 351(11), 4411–4428 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Kriloff, C., Ram, A.: Representations of graded Hecke algebras. Representat. Theory 6, 31–69 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Langlands, R.P.: On the classification of irreducible representations of real algebraic groups. In: Representation Theory and Harmonic Analysis on Semisimple Lie groups. Math. Surveys Monogr. vol. 31, pp. 101–170. American Mathematical Society (1989)Google Scholar
  14. 14.
    Lusztig, G.: Affine Hecke algebras and their graded version. J. Am. Math. Soc 2(3), 599–635 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Lusztig, G.: Classification of unipotent representations of simple p-adic groups. Int. Math. Res. Not. 11, 517–589 (1995)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lusztig, G.: Cuspidal local systems and graded Hecke algebras III. Representat. Theory 6, 202–242 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Macdonald, I.G.: Polynomial functors and wreath products. J. Pure Appl. Algebra 18.2, 173–204 (1980)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Opdam, E.: Harmonic analysis for certain representations of graded Hecke algebras. Acta Math. 175, 75–121 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Opdam, E.: On the spectral decomposition of affine Hecke algebras. J. Inst. Math. Jussieu 3(4), 531–648 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Opdam, E., Solleveld, M.: Homological algebra for affine Hecke algebras. Adv. Math. 220, 1549–1601 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Opdam, E., Solleveld, M.: Discrete series characters for affine Hecke algebras and their formal degrees. Acta Math 205, 105–187 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Ram, A., Rammage, J.: Affine Hecke algebras, cyclotomic Hecke algebras and Clifford theory. In: A Tribute to C.S. Seshadri (Chennai 2002). Trends in Mathematics, pp. 428–466. Birkhäuser (2003)Google Scholar
  23. 23.
    Slooten, K.: Generalized Springer correspondence and Green functions for type B/C graded Hecke algebras. Adv. Math. 203, 34–108 (2005)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Solleveld, M.: Periodic Cyclic Homology of Affine Hecke Algebras. Ph.D. Thesis, Universiteit van Amsterdam (2007). arXiv:0910.1606
  25. 25.
    Solleveld, M.: Periodic cyclic homology of reductive p-adic groups. J. Noncommut. Geom. 3(4), 501–558 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Solleveld, M.: Homology of graded Hecke algebras. J. Algebra 323, 1622–1648 (2010)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Mathematisches InstitutGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations