Algebras and Representation Theory

, Volume 15, Issue 1, pp 1–27 | Cite as

Universal Enveloping Algebras of Lie Antialgebras

Article

Abstract

Lie antialgebras is a class of supercommutative algebras recently appeared in symplectic geometry. We define the notion of enveloping algebra of a Lie antialgebra and study its properties. We show that every Lie antialgebra is canonically related to a Lie superalgebra and prove that its enveloping algebra is a quotient of the enveloping algebra of the corresponding Lie superalgebra.

Keywords

Jordan superalgebra Lie superalgebra Universal enveloping algebra 

Mathematics Subject Classifications (2010)

17C50 17C70 17B60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bavula, V., van Oystaeyen, F.: The simple modules of the Lie superalgebra osp(1,2). J. Pure Appl. Algebra 150(1), 41–52 (2000)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Braverman, A., Gaitsgory, D.: Poincaré-Birkhoff-Witt theorem for quadratic algebras of Koszul type. J. Algebra 181(2), 315–328 (1996)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Kaplansky, I.: www.justpasha.org/math/links/subj/lie/kaplansky/. (unpublished preprints)
  4. 4.
    Kac, V.: Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras. Commun. Algebra 5(13), 1375–1400 (1977)CrossRefMATHGoogle Scholar
  5. 5.
    Martinez, C.: Simplicity of Jordan superalgebras and relations with lie structures. Irish Math. Soc. Bull. 50, 97–116 (2003)MATHGoogle Scholar
  6. 6.
    Martinez, C., Zelmanov, E.: Specializations of Jordan superalgebras. Can. Math. Bull. 45(4), 653–671 (2002)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Martinez, C., Zelmanov, E.: Unital bimodules over the simple Jordan superalgebra D(t). Trans. Am. Math. Soc. 358(8), 3637–3649 (2006) (electronic)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    McCrimmon, K.: Kaplansky superalgebras. J. Algebra 164, 656–694 (1994)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Morier-Genoud, S.: Representations of asl2. Int. Math. Res. Not. 2009, 1838–1859 (2009)MATHMathSciNetGoogle Scholar
  10. 10.
    Ovsienko, V.: Lie antialgebras: prémices. arXiv:0705.1629
  11. 11.
    Trushina, M.N.: Irreducible representations of a certain Jordan superalgebra. J. Algebra Appl. 4(1), 1–14 (2005)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Institut Mathématiques de Jussieu, Théorie des groupesUniversité Denis Diderot Paris 7Paris Cedex 13France
  2. 2.Institut Mathématiques de JussieuUniversité Pierre et Marie Curie Paris 6Paris Cedex 05France

Personalised recommendations