Algebras and Representation Theory

, Volume 14, Issue 2, pp 283–300 | Cite as

On the Representation Dimension of Schur Algebras

  • Vanessa MiemietzEmail author
  • Steffen Oppermann


Lower bounds for the representation dimension of Schur algebras for GL n in characteristic p ≥ 2n − 1 are established. In particular it is shown that for fixed n the representation dimensions of the Schur algebras get arbitrarily large.


Representation dimension Schur algebra 

Mathematics Subject Classifications (2000)

16E10 20G43 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Assem, I., Platzeck, M.I., Trepode, S.: On the representation dimension of tilted and laura algebras. J. Algebra 296(2), 426–439 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Auslander, M.: Representation Dimension of Artin Algebras. Queen Mary College Mathematics Notes (1971) (Republished in Auslander, M.: Selected works of Maurice Auslander. Part 1. American Mathematical Society, Providence (1999) (Edited and with a foreword by Idun Reiten, Sverre O. Smalø, and Øyvind Solberg))Google Scholar
  3. 3.
    Bergh, P.A.: Representation dimension and finitely generated cohomology. Adv. Math. 219(1), 389–400 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bergh, P.A., Iyengar, S.B., Krause, H., Oppermann, S.: Dimensions of triangulated categories via Koszul objects. arXiv:0802.0952
  5. 5.
    De Visscher, M., Donkin, S.: On projective and injective polynomial modules. Math. Z. 251(2), 333–358 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Dlab, V., Ringel, C.M.: The module theoretical approach to quasi-hereditary algebras. In: Representations of Algebras and Related Topics (Kyoto, 1990), London Math. Soc. Lecture Note Ser., vol. 168, pp. 200–224. Cambridge Univ. Press, Cambridge (1992)Google Scholar
  7. 7.
    Donkin, S.: On tilting modules for algebraic groups. Math. Z. 212(1), 39–60 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Donkin, S.: On Schur algebras and related algebras. IV. The blocks of the Schur algebras. J. Algebra 168(2), 400–429 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Fang, M., Henke, A., Koenig, S.: Comparing GLn-representations by characteristic-free isomorphisms between generalized Schur algebras. Forum Math. 20(1), 45–79 (2008) (With an appendix by Stephen Donkin)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Iyama, O.: Finiteness of representation dimension. Proc. Am. Math. Soc. 131(4), 1011–1014 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kleshchev, A.S.: Branching rules for modular representations of symmetric groups. III. Some corollaries and a problem of Mullineux. J. Lond. Math. Soc. (2) 54(1), 25–38 (1996)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Lascoux, A., Leclerc, B., Thibon, J.-Y.: Hecke algebras at roots of unity and crystal bases of quantum affine algebras. Commun. Math. Phys. 181(1), 205–263 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Oppermann, S.: Lower bounds for Auslander’s representation dimension. Duke Math. J. 148, 211–249 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Oppermann, S.: Representations of quasi-tilted algebras. J. Lond. Math. Soc. (to appear)Google Scholar
  15. 15.
    Rouquier, R.: Representation dimension of exterior algebras. Invent. Math. 165(2), 357–367 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Rouquier, R.: Dimensions of triangulated categories. J. K-theory 1(2), 193–256 (2008)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Scopes, J.: Cartan matrices and Morita equivalence for blocks of the symmetric groups. J. Algebra 142(2), 441–455 (1991)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Mathematical InstituteOxfordUK
  2. 2.Institutt for matematiske fagNTNUTrondheimNorway

Personalised recommendations