Algebras and Representation Theory

, Volume 14, Issue 1, pp 113–129 | Cite as

Jordan Gradings on Associative Algebras

Article

Abstract

In this paper we apply the method of functional identities to the study of group gradings by an abelian group G on simple Jordan algebras, under very mild restrictions on the grading group or the base field of coefficients.

Keywords

Associative algebras Jordan algebras Group gradings Functional identities 

Mathematics Subject Classifications (2000)

16W10 16W30 16W50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bahturin, Yu.: Basic Structures of Modern Algebra. Kluwer AP, Deventer (1991)Google Scholar
  2. 2.
    Bahturin, Yu., Brešar, M.: Lie gradings on associative algebras. J. Algebra 321, 264–283 (2009)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bahturin Yu., Shestakov, I.: Gradings of simple Jordan algebras and their relation to the gradings of simple associative algebras. Commun. Algebra 29, 4095–4102 (2001)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bahturin, Yu., Shestakov, I., Zaicev, M.: Gradings on simple Jordan and Lie algebras. J. Algebra 283, 849–868 (2005)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bahturin, Yu., Shestakov, I., Zaicev, M.: Gradings on the Jordan algebra M n(F)(+). Preprint IME-USP, RT-MAT 2005 - 22Google Scholar
  6. 6.
    Bahturin, Yu., Zaicev, M.: Graded algebras and graded identities. In: Polynomial Identities and Combinatorial Methods, Pantelleria, 2001. Lecture Notes in Pure and Appl. Math., vol. 235, pp. 101–139. Dekker, New York (2003)Google Scholar
  7. 7.
    Bahturin, Yu., Zaicev, M.: Gradings on simple Lie algebras of type “A”. J. Lie Theory 16, 719–742 (2006)MATHMathSciNetGoogle Scholar
  8. 8.
    Bahturin, Yu., Zaicev, M.: Involutions on graded matrix algebras. J. Algebra 315, 527–540 (2007)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Beidar, K.I., Brešar, M., Chebotar, M.A.: Functional identities revised: the fractional and the strong degree. Commun. Algebra 30, 935–969 (2002)MATHCrossRefGoogle Scholar
  10. 10.
    Beidar, K.I., Martindale, W.S., Mikhalev, A.V.: Rings with Generalized Identities. Marcel Dekker, New York (1996)MATHGoogle Scholar
  11. 11.
    Brešar, M., Chebotar, M.A., Martindale, W.S.: Functional Identities. Birkhäuser, Boston (2007)MATHGoogle Scholar
  12. 12.
    Herstein, I.N.: Topics in Ring Theory. University of Chicago Press, Chicago (1969)MATHGoogle Scholar
  13. 13.
    Jacobson, N., Rickart, C.: Jordan homomorphisms of rings. Trans. Am. Math. Soc. 69, 479–502 (1950)MATHMathSciNetGoogle Scholar
  14. 14.
    Jacobson, N., Rickart, C.: Homomorphisms on Jordan rings of self-adjoint elements. Trans. Am. Math. Soc. 72, 310–322 (1952)MATHMathSciNetGoogle Scholar
  15. 15.
    Martindale, W.S.: Jordan homomorphisms of the symmetric elements of a ring with involution. J. Algebra 5, 232–249 (1967)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Montgomery, S.: Hopf algebras and their actions on rings. In: CBMS Regional Conference Series in Mathematics, vol. 82. American Mathematical Society, Providence (1993)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Yuri Bahturin
    • 1
    • 2
  • Matej Brešar
    • 3
    • 4
  • Ivan Shestakov
    • 5
  1. 1.Department of Mathematics and StatisticsMemorial University of NewfoundlandSt. John’sCanada
  2. 2.Department of Algebra, Faculty of Mechanics and MathematicsMoscow State UniversityMoscowRussia
  3. 3.Department of MathematicsUniversity of LjubljanaLjubljanaSlovenia
  4. 4.Department of Mathematics and Computer ScienceUniversity of MariborMariborSlovenia
  5. 5.Instituto de Mathemática e EstatísticaUniversidade de São PauloSao PauloBrazil

Personalised recommendations