Algebras and Representation Theory

, Volume 14, Issue 1, pp 97–112 | Cite as

Cluster-Cyclic Quivers with Three Vertices and the Markov Equation

With an appendix by Otto Kerner
Article

Abstract

Acyclic cluster algebras have an interpretation in terms of tilting objects in a Calabi-Yau category defined by some hereditary algebra. For a given quiver Q it is thus desirable to decide if the cluster algebra defined by Q is acyclic. We call Q cluster-acyclic in this case, otherwise cluster-cyclic. In this note we classify the cluster-cyclic quivers with three vertices using a Diophantine equation studied by Markov.

Keywords

Cluster algebras Mutations Braid group 

Mathematics Subject Classification (2000)

16G20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Assem, I., Blais, M., Brüstle, T., Samson, A.: Mutation classes of skew-symmetric 3 × 3 − matrices. Commun. Algebra. 36(4), 1209–1220 (2008)MATHCrossRefGoogle Scholar
  2. 2.
    Buan, A., Marsh, R., Reineke, M., Reiten, I., Todorov, G.: Tilting theory and cluster combinatorics. Adv. Math. 204, 572–612 (2006)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cassels, J.W.S.: An Introduction to Diophantine Approximation. Facsimile reprint of the 1957 edition. Cambridge Tracts in Mathematics and Mathematical Physics, no. 45. Hafner, New York (1972)Google Scholar
  4. 4.
    de la Pea, J.A., Takane, M.: Spectral properties of Coxeter transformations and applications. Arch. Math. (Basel) 55(2), 120–134 (1990)MathSciNetGoogle Scholar
  5. 5.
    Fomin, S., Zelevinsky, A.: Cluster algebras I. Foundations. J. Am. Math. Soc. 15(2), 497–529 (2002)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Fomin, S., Zelevinsky, A.: Cluster algebras II. Finite type classification. Invent. Math. 154(1), 63–121 (2003)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gorodentsev, A.L., Rudakov, A.N.: Exceptional vector bundles on projective spaces. Duke Math. J. 54(1), 115–130 (1987)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kerner, O.: Wild cluster tilted algebras of rank three. J. Pure Appl. Algebra 212, 222–227 (2008)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lenzing, H.: Coxeter transformations associated with finite-dimensional algebras. Computational methods for representations of groups and algebras (Essen, 1997), Birkhauser, Basel. Prog. Math. 173, 287–308 (1999)MathSciNetGoogle Scholar
  10. 10.
    Markoff, A.: Sur les formes quadratiques binaires indéfinies. Mathematische Annalen, Band XVII, pp. 379–399 (1882)Google Scholar
  11. 11.
    Ringel, C.M.: Tame algebras and integral quadratic forms. Lecture Notes in Mathematics, 1099. Springer, Berlin (1984)MATHGoogle Scholar
  12. 12.
    Rudakov, A.N.: Markov numbers and exceptional bundles on P 2. Izv. Akad. Nauk SSSR, Ser. Mat. (Russian) 52(1), 100–112, 240 (1988) (translation in Math. USSR-Izv. 32(1), 99–112 (1989))Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Fakultät für MathematikUniversität BielefeldBielefeldGermany
  2. 2.Département de MathématiquesUniversité de SherbrookeSherbrookeCanada
  3. 3.Department of MathematicsBishop’s UniversitySherbrookeCanada
  4. 4.Mathematisches InstitutFachbereich Mathematik und Informatik der Universität MünsterMünsterGermany

Personalised recommendations