Algebras and Representation Theory

, Volume 14, Issue 1, pp 87–96 | Cite as

Lie Algebras with a Coalgebra Splitting

Article

Abstract

We study Lie algebras whose multiplication affords a splitting by a coalgebra map.

Keywords

Lie algebra Lie coalgebra Casimir operator 

Mathematics Subject Classifications (2000)

Primary 17B20 Secondary 17B62 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Block, R.: Trace forms on Lie algebras. Can. J. Math. 14, 553–564 (1962)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Block, R., Wilson, R.: Classification of the restricted simple Lie algebras. J. Algebra 114, 115–259 (1988)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Dieudonné, J.: On semi-simple Lie algebras. Proc. Am. Math. Soc. 4, 931–932 (1953)MATHCrossRefGoogle Scholar
  4. 4.
    Farnsteiner, R.: The associative forms of the graded Cartan type Lie algebras. Trans. Am. Math. Soc. 295, 417–427 (1986)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Xia, L., Hu, N.: Introduction to co-split Lie algebras. Algebr. Represent. Theory (2009). doi: 10.1007/s10468-009-9183-0 Google Scholar
  6. 6.
    Humphreys, J.: Introduction to Lie Algebras and Representation Theory. Graduate Texts in Mathematics, vol. 9. Springer, New York (1980)Google Scholar
  7. 7.
    Jacobson, N.: A note on automorphisms and derivations of Lie algebras. Proc. Am. Math. Soc. 6, 281–283 (1955)MATHCrossRefGoogle Scholar
  8. 8.
    Jacobson, N.: Lie Algebras. Dover, New York (1979)Google Scholar
  9. 9.
    Seligman, G.: On Lie algebras of prime characteristic. Mem. Am. Math. Soc. 19 (1956)Google Scholar
  10. 10.
    Seligman, G.: Some remarks on classical Lie algebras. J. Math. Mech. 6, 549–558 (1957)MATHMathSciNetGoogle Scholar
  11. 11.
    Seligman, G.: Modular Lie Algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 40. Springer, New York (1967)Google Scholar
  12. 12.
    Strade, H., Farnsteiner, R.: Modular Lie Algebras and their Representations. Pure and Applied Mathematics, vol. 116. Marcel Dekker, New York (1988)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Mathematisches SeminarChristian-Albrechts-Universität zu KielKielGermany

Personalised recommendations