Algebras and Representation Theory

, Volume 14, Issue 1, pp 79–85 | Cite as

Torsion Functors of Local Cohomology Modules

Article

Abstract

Through a study of torsion functors of local cohomology modules we improve some non-finiteness results on the top non-zero local cohomology modules with respect to an ideal.

Keywords

Coatomic modules Local cohomology modules Minimax modules Spectral sequences 

Mathematics Subject Classifications (2000)

13D45 13D07 13C12 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aghapournahr, M., Melkersson, L.: Local cohomology and Serre subcategories. J. Algebra 320, 1275–1287 (2008)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Asgharzadeh, M., Tousi, M.: A unified approach to local cohomology modules using Serre classes. arXiv:0712.3875v2 [math.AC]
  3. 3.
    Brodmann, M.P., Sharp, R.Y.: Local cohomology: an algebraic introduction with geometric applications. In: Cambridge Studies in Advanced Mathematics, p. 60. Cambridge University Press, Cambridge (1998)Google Scholar
  4. 4.
    Delfino, D., Marley, T.: Cofinite modules of local cohomology. J. Pure Appl. Algebra 121(1), 45–52 (1997)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dibaei, M.T., Yassemi, S.: Associated primes and cofiniteness of local cohomology modules. Manuscr. Math. 117, 199–205 (2005)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Grothendieck, A.: Cohomologie Locale des Faisceaux Cohérents et Théorèmes de Lefschetz Locaux et Globaux (SGA 2). North-Holland, Amsterdam (1968)Google Scholar
  7. 7.
    Hartshorne, R.: Cohomological dimension of algeraic varieties. Ann. Math. 88 (1968), 403–450CrossRefMathSciNetGoogle Scholar
  8. 8.
    Hartshorne, R.: Affine duality and cofiniteness. Invent. Math 9, 145–164 (1970)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hellus, M.: On the associated primes of Matlis duals of local cohomology modules II. arXiv:0906.0642v2 [math.AC]
  10. 10.
    Khashyarmanesh, K.: On the finiteness properties of extension and torsion functors of local cohomology modules. Proc. Am. Math. Soc. 135, 1319–1327 (2007)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Melkersson, L.: Modules cofinite with respect to an ideal. J. Algebra 285, 649–668 (2005)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Rotman, J.: An Introduction to Homological Algebra. Academic, London (1979)MATHGoogle Scholar
  13. 13.
    Yoshida, K.-I.: Cofiniteness of local cohomology modules for ideals of dimension one. Nagoya Math. J. 147, 179–191 (1997)MATHMathSciNetGoogle Scholar
  14. 14.
    Zöschinger, H.: Minimax moduln. J. Algebra 102, 1–32 (1986)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Zöschinger, H.: Koatomare moduln. Math. Z. 170, 221–232 (1980)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Faculty of Mathematical Sciences and ComputerTarbiat Moallem UniversityTehranIran
  2. 2.School of MathematicsInstitute for Research in Fundamental Sciences (IPM)TehranIran
  3. 3.Payame Noor University (PNU)TehranIran

Personalised recommendations