Algebras and Representation Theory

, Volume 14, Issue 1, pp 41–55

Fusion Rings Arising from Normal Hopf Subalgebras

Article

Abstract

For any normal commutative Hopf subalgebra K = kG of a semisimple Hopf algebra we describe the ring inside kG obtained by the restriction of H-modules. If G = \(G={\mathbb{Z}}\)p this ring determines a fusion ring and we give a complete description for it. The case \(G={\mathbb{Z}}_{p^n}\) and some other applications are presented.

Keywords

Hopf algebras Normal Hopf subalgebras Frobenius-Perron Representations of Hopf algebras 

Mathematics Subject Classification (2000)

16W30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burciu, S.: On some representations of the Drinfeld double. J. Algebra 296, 480–504 (2006)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Burciu, S.: Coset decomposition for semisimple Hopf algebras. Commun. Algebra 37(10), 3573–3585 (2009)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Burciu, S.: Normal Hopf subalgebras of semisimple Hopf Algebras. Proc. Am. Math. Soc. 137, 3969–3979 (2009)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Drinfeld, V., Gelaki, S., Nikshych, D., Ostrik, V.: Group-theoretical properties of nilpotent modular categories. arXiv:0704.0195v2 (2007)
  5. 5.
    Etingof, P., Gelaki, S.: Semisimple Hopf algebras of dimension pq are trivial. J. Algebra 210(2), 664–669 (1998)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Etingof, P., Nikshych, D., Ostrik, V.: Weakly group-theoretical and solvable fusion categories. arXiv:0809.3031 (2008)
  7. 7.
    Etingof, P., Nikshych, D., Ostrik, V.: On fusion categories. Ann. Math. 162, 581–642 (2005)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gelaki, S.: Quantum groups of dimension pq 2. Isr. J. Math. 102, 227–267 (1997)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Jordan, D., Larson, E.: On the classification of certain fusion categories. arXiv:0812.1603 (2008)
  10. 10.
    Larson, R.G., Radford, D.E.: Finite dimensional cosemisimple Hopf Algebras in characteristic zero are semisimple. J. Algebra 117, 267–289 (1988)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kosaki, H., Izumi, M.: Kac algebras arising from composition of subfactors: general theory and classification. Mem. Am. Math. Soc. 158(750), 1–198 (2002)MathSciNetGoogle Scholar
  12. 12.
    Masuoka, A.: Some further classification results on semisimple Hopf algebras. Commun. Algebra 178(21), 307–329 (1996)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Montgomery, S.: Hopf Algebras and Their Actions on Rings, vol. 82, 2nd revised printing. Reg. Conf. Ser. Math. American Mathematical Society, Providence (1997)Google Scholar
  14. 14.
    Montgomery, S., Witherspoon, S.: Crossed products for Hopf Algebras. J. Pure Appl. Algebra 111, 381–385 (1988)Google Scholar
  15. 15.
    Natale, S., Andruskiewitsch, N.: Examples of self-dual Hopf algebras. J. Math. Sci. Univ. Tokyo 6(1), 181–215 (1999)MATHMathSciNetGoogle Scholar
  16. 16.
    Natale, S.: Hopf algebra extensions of group algebras and Tambara-Yamagami categories. arXiv:0805.3172 (2008)
  17. 17.
    Natale, S.: On semisimple Hopf algebras of dimension pq 2. J. Algebra 221(1), 242–278 (1999)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Natale, S.: On semisimple Hopf algebras of dimension pq 2, II. Algebr. Represent. Theory 3(3), 277–291 (2001)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Natale, S.: On semisimple Hopf algebras of dimension pq r. Algebr. Represent. Theory 7(2), 173–188 (2004)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Natale, S.: Semisolvability of Semisimple Hopf Algebras of Low Dimension, no. 186. Mem. Am. Math. Soc. American Mathematical Society, Providence (2007)Google Scholar
  21. 21.
    Nichols, W.D., Richmond, M.B.: The Grothendieck group of a Hopf algebra. J. Pure Appl. Algebra 106, 297–306 (1996)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Nikshych, D.: K 0-rings and twistings of finite dimensional semisimple Hopf algebras. Commun. Algebra 26, 321–342 (1998)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Nikshych, D.: Non group-theoretical semisimple Hopf algebras from group actions on fusion categories. Sel. Math. 14(1), 145–161 (2009)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Ostrik, V.: Module categories, weak Hopf algebras and modular invariants. Transform. Groups 26(8), 177–206 (2003)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Zhu, Y.: Hopf algebras of prime dimension. Int. Math. Res. Not. 1, 53–59 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Inst. of Math. “Simion Stoilow” of the Romanian AcademyBucharestRomania

Personalised recommendations