Algebras and Representation Theory

, Volume 14, Issue 1, pp 1–39

Cyclotomic Birman–Wenzl–Murakami Algebras, II: Admissibility Relations and Freeness

Article

Abstract

The cyclotomic Birman-Wenzl-Murakami algebras are quotients of the affine BMW algebras in which the affine generator satisfies a polynomial relation. We study admissibility conditions on the ground ring for these algebras, and show that the algebras defined over an admissible integral ground ring S are free S-modules and isomorphic to cyclotomic Kauffman tangle algebras. We also determine the representation theory in the generic semisimple case, obtain a recursive formula for the weights of the Markov trace, and give a sufficient condition for semisimplicity.

Keywords

Affine and cyclotomic BMW algebras Affine and cyclotomic Hecke algebras Algebras of tangles Affine braid group 

Mathematics Subject Classifications (2000)

20C08 16G99 81R50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ariki, S.: Representations of quantum algebras and combinatorics of Young tableaux. In: University Lecture Series, vol. 26. American Mathematical Society, Providence (2002). Translated from the 2000 Japanese edition and revised by the author. MR MR1911030 (2004b:17022)Google Scholar
  2. 2.
    Ariki, S., Koike, K.: A Hecke algebra of \(({\bf Z}/r{\bf Z})\wr{\mathfrak{S}_n}\) and construction of its irreducible representations. Adv. Math. 106(2), 216–243 (1994). MR MR1279219 (95h:20006)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ariki, S., Mathas, A., Rui, H.: Cyclotomic Nazarov-Wenzl algebras. Nagoya Math. J. 182, 47–134 (2006). MR MR2235339MATHMathSciNetGoogle Scholar
  4. 4.
    Artin, M.: Algebra. Prentice Hall, Englewood Cliffs (1991). MR MR1129886 (92g:00001)Google Scholar
  5. 5.
    Beliakova, A., Blanchet, C.: Skein construction of idempotents in Birman–Murakami–Wenzl algebras. Math. Ann. 321(2), 347–373 (2001). MR MR1866492 (2002h:57018)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Birman, J.S., Wenzl, H.: Braids, link polynomials and a new algebra. Trans. Am. Math. Soc. 313(1), 249–273 (1989). MR 90g:57004MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Goodman, F.M.: Cellularity of cyclotomic Birman–Wenzl–Murakami algebras. J. Algebra 321(11), 3299–3320 (2009). Special Issue in Honor of Gus LehrerMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Goodman, F.M.: Comparison of admissibility conditions for cyclotomic Birman–Wenzl–Murakami algebras. arXiv:0905.4258 (2009)
  9. 9.
    Goodman, F.M., de la Harpe, P., Jones, V.F.R.: Coxeter graphs and towers of algebras. In: Mathematical Sciences Research Institute Publications, vol. 14. Springer, New York (1989). MR MR999799 (91c:46082)Google Scholar
  10. 10.
    Goodman, F.M., Graber, J.: Cellularity and the Jones basic construction. arXiv:0906.1496 (2009)
  11. 11.
    Goodman, F.M., Hauschild, H.: Affine Birman–Wenzl–Murakami algebras and tangles in the solid torus. Fundam. Math. 190, 77–137 (2006). MR MR2232856MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Goodman, F.M., Mosley, H.H.: Cyclotomic Birman–Wenzl–Murakami algebras I: Freeness and realization as tangle algebras. J. Knot Theory Ramif. 18, 1089–1127 (2009)MATHCrossRefGoogle Scholar
  13. 13.
    Graham, J.J., Lehrer, G.I.: Cellular algebras. Invent. Math. 123(1), 1–34 (1996). MR MR1376244 (97h:20016)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Häring-Oldenburg, R.: Cyclotomic Birman–Murakami–Wenzl algebras. J. Pure Appl. Algebra 161(1–2), 113–144 (2001). MR MR1834081 (2002c:20055)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Jones, V.F.R.: Index for subfactors. Invent. Math. 72(1), 1–25 (1983). MR MR696688 (84d:46097)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kauffman, L.H.: An invariant of regular isotopy. Trans. Am. Math. Soc. 318(2), 417–471 (1990) MR MR958895 (90g:57007)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Krattenthaler, C.: Advanced determinant calculus. Sém. Lothar. Combin. 42(B42q), 67 (1999) (electronic). The Andrews Festschrift (Maratea, 1998). MR MR1701596 (2002i:05013)MathSciNetGoogle Scholar
  18. 18.
    Lambropoulou, S.: A study of braids in 3-manifolds. Ph.D. Thesis, Warwick (1993)Google Scholar
  19. 19.
    Lambropoulou, S.: Solid torus links and Hecke algebras of \({\mathcal B}\)-type. In: Proceedings of the Conference on Quantum Topology (Manhattan, KS, 1993), pp. 225–245. World Sci. Publ., River Edge (1994). MR MR1309934 (96a:57020)Google Scholar
  20. 20.
    Leduc, R., Ram, A. A ribbon Hopf algebra approach to the irreducible representations of centralizer algebras: the Brauer, Birman-Wenzl, and type A Iwahori-Hecke algebras. Adv. Math. 125(1), 1–94 (1997). MR MR1427801 (98c:20015)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Mathas, A. Seminormal forms and Gram determinants for cellular algebras. J. Reine Angew. Math. 619, 141–173 (2008) (with an appendix by Marcos Soriano)MATHMathSciNetGoogle Scholar
  22. 22.
    Morton, H., Traczyk, P.: Knots and algebras. In: Martin-Peindador, E., Rodez Usan, A. (eds.) Contribuciones Matematicas en Homenaje al profesor D. Antonio Plans Sanz de Bremond, University of Zaragoza, Zaragoza, pp. 201–220 (1990)Google Scholar
  23. 23.
    Morton, H., Wassermann, A.: A basis for the Birman-Wenzl algebra. 1–29 (1989, revised 2000) Unpublished manuscriptGoogle Scholar
  24. 24.
    Murakami, J.: The Kauffman polynomial of links and representation theory. Osaka J. Math. 24(4), 745–758 (1987). MR MR927059 (89c:57007)MATHMathSciNetGoogle Scholar
  25. 25.
    Nazarov, M.: Young’s orthogonal form for Brauer’s centralizer algebra. J. Algebra 182(3), 664–693 (1996). MR MR1398116 (97m:20057)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Orellana, R., Ram, A.: Affine braids, Markov traces and the category O. arXiv:math.RT/0401317 (2004)
  27. 27.
    Parvathi, M., Savithri, D.: Representations of G-Brauer algebras. Southeast Asian Bull. Math. 26(3), 453–468 (2002). MR MR2047837 (2005b:16056)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Rui, H., Si, M.: The representation theory of cyclotomic BMW algebras II. arXiv:0807.4149 (2008)
  29. 29.
    Rui, H., Xu, J.: The representations of cyclotomic BMW algebras. J. Pure Appl. Algebra. 213(12), 2262–2288 (2009)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Rui, H., Yu, W.: On the semi-simplicity of the cyclotomic Brauer algebras. J. Algebra 277(1), 187–221 (2004). MR MR2059627 (2005b:16057)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Turaev, V.: The Conway and Kauffman modules of a solid torus. Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklov. (LOMI) 167(Issled. Topol., 6), 79–89, 190 (1988). MR MR964255 (90f:57012)MATHGoogle Scholar
  32. 32.
    Wenzl, H.: On the structure of Brauer’s centralizer algebras. Ann. Math. (2) 128(1), 173–193 (1988). MR MR951511 (89h:20059)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Wenzl, H.: Quantum groups and subfactors of type B, C, and D. Commun. Math. Phys. 133(2), 383–432 (1990). MR MR1090432 (92k:17032)MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Wilcox, S., Yu, S.: The cyclotomic BMW algebra associated with the two string type B braid group. Comm. Algebra (to appear)Google Scholar
  35. 35.
    Wilcox, S., Yu, S.: On the cellularity of the cyclotomic Birman-Murakami-Wenzl algebras. J. Lond. Math. Soc. (to appear)Google Scholar
  36. 36.
    Wilcox, S., Yu, S.: On the freeness of the cyclotomic BMW algebras: admissibility and an isomorphism with the cyclotomic Kauffman tangle algebras. arXiv:0911.5284 (2009, preprint)
  37. 37.
    Yu, S.: The cyclotomic Birman–Murakami–Wenzl algebras. Ph.D. Thesis, University of Sydney arXiv:0810.0069 (2007)

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Frederick M. Goodman
    • 1
  • Holly Hauschild Mosley
    • 2
  1. 1.Department of MathematicsUniversity of IowaIowa CityUSA
  2. 2.Department of MathematicsGrinnell CollegeGrinnellUSA

Personalised recommendations