Algebras and Representation Theory

, Volume 13, Issue 5, pp 511–519

Remarks on the McKay Conjecture

Open Access


The McKay Conjecture (MC) asserts the existence of a bijection between the (inequivalent) complex irreducible representations of degree coprime to p (p a prime) of a finite group G and those of the subgroup N, the normalizer of Sylow p-subgroup. In this paper we observe that MC implies the existence of analogous bijections involving various pairs of algebras, including certain crossed products, and that MC is equivalent to the analogous statement for (twisted) quantum doubles. Using standard conjectures in orbifold conformal field theory, MC is equivalent to parallel statements about holomorphic orbifolds VG, VN. There is a uniform formulation of MC covering these different situations which involves quantum dimensions of objects in pairs of ribbon fusion categories.


McKay correspondence Quantum double 

Mathematics Subject Classification (2000)


Copyright information

© The Author(s) 2009

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of California at Santa CruzSanta CruzUSA

Personalised recommendations