Algebras and Representation Theory

, Volume 13, Issue 4, pp 383–405 | Cite as

Hopf Algebras of Dimension 16

Article

Abstract

We complete the classification of Hopf algebras of dimension 16 over an algebraically closed field of characteristic zero. We show that a non-semisimple Hopf algebra of dimension 16, has either the Chevalley property or its dual is pointed.

Keywords

Hopf algebras Dimension 16 Chevalley property Extensions 

Mathematics Subject Classification (2000)

16W30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andruskiewitsch, N., Devoto, J.: Extensions of Hopf algebras. Algebra Analiz. 7(1), 22–61 (1995); translation in St. Petersburg Math. J. 7(1), 17–52 (1996)MATHMathSciNetGoogle Scholar
  2. 2.
    Andruskiewitsch, N., Etingof, P., Gelaki, S.: Triangular Hopf algebras with the Chevalley property. Michigan Math. J. 49(2), 277–298 (2001)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Andruskiewitsch, N., Natale, S.: Counting arguments for Hopf algebras of low dimension. Tsukuba J. Math. 25(1), 187–201 (2001)MATHMathSciNetGoogle Scholar
  4. 4.
    Andruskiewitsch, N., Schneider, H.-J.: Hopf algebras of order p 2 and braided Hopf algebras of order p. J. Algebra 199(2), 430–454 (1998)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Beattie, M.: Duals of pointed Hopf algebras. J. Algebra 262, 54–76 (2003)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Beattie, M., Dăscălescu, S.: Hopf algebras of dimension 14. J. Lond. Math. Soc. II Ser. 69(1), 65–78 (2004)MATHCrossRefGoogle Scholar
  7. 7.
    Calinescu, C., Dăscălescu, S., Masuoka, A., Menini, C.: Quantum lines over non-cocommutative cosemisimple Hopf algebras. J. Algebra 273, 753–779 (2004)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Caenepeel, S., Dăscălescu, S., Raianu, Ş.: Classifying pointed Hopf algebras of dimension 16. Comm. Algebra 28(2), 541–568 (2000)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Doi, Y., Takeuchi, M.: Quaternion algebras and Hopf crossed products. Comm. Algebra 23(9), 3291–3325 (1995)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Etingof, P., Gelaki, S.: Semisimple Hopf algebras of dimension pq are trivial. J. Algebra 210(2), 664–669 (1998)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Etingof, P., Gelaki, S.: On Hopf algebras of dimension pq. J. Algebra 277(2), 668–674 (2004)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Fukuda, N.: Semisimple Hopf algebras of dimension 12. Tsukuba J. Math. 21(1), 43–54 (1997)MATHMathSciNetGoogle Scholar
  13. 13.
    García G.: On Hopf algebras of dimension p 3. Tsukuba J. Math. 29(1), 259–284 (2005)MATHMathSciNetGoogle Scholar
  14. 14.
    Gelaki, S., Westreich, S.: On semisimple Hopf algebras of dimension pq. Proc. Amer. Math. Soc. 128,(1), 39–47 (2000)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kashina, Y.: Classification of semisimple Hopf algebras of dimension 16. J. Algebra 232, 617–663 (2000)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Larson, R.G., Radford D.E.: Finite-dimensional cosemisimple Hopf algebras in characteristic 0 are semisimple. J. Algebra 117, 267–289 (1988)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Montgomery, S.: Hopf algebras and their actions on rings. In: CBMS Reg. Conf. Ser. Math., vol. 82. Amer. Math. Soc. (1993)Google Scholar
  18. 18.
    Masuoka, A.: Cleft extension for a Hopf algebra generated by a nearly primitive element. Comm. Algebra 22(11), 4537–4556 (1994)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Masuoka, A.: Semisimple Hopf algebras of dimension 2p. Comm. Algebra 23(5), 1931–1940 (1995)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Masuoka, A.: The p n theorem for semisimple Hopf algebras. Proc. Amer. Math. Soc. 124(3), 735–737 (1996)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Natale, S.: Hopf algebras of dimension 12. Algebr. Represent. Theory 5(5), 445–455 (2002)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Ng, S.-H.: Non-semisimple Hopf algebras of dimension p 2. J. Algebra 255(1), 182–197 (2002)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Ng, S.-H.: Hopf algebras of dimension pq. J. Algebra 276(1), 399–406 (2004)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Ng, S.-H.: Hopf algebras of dimension 2p. Proc. Amer. Math. Soc. 133(8), 2237–2242 (2005) (electronic)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Ng, S.-H.: Hopf algebras of dimension pq, II. J. Algebra 319(7), 2772–2788 (2008)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Nichols, W.D., Zoeller M.B.: A Hopf algebras freeness theorem. Amer. J. Math. 111(2), 381–385 (1989)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Ştefan, D.: Hopf algebras of low dimension. J. Algebra 211, 343–361 (1999)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Schneider, H.-J.: Normal basis and transitivity of crossed products for Hopf algebras. J. Algebra 152, 389–312 (1992)CrossRefGoogle Scholar
  29. 29.
    Williams, R.: Finite dimensional Hopf algebras. Ph.D. thesis, Florida State University (1988)Google Scholar
  30. 30.
    Zhu, Y.: Hopf algebras of prime dimension. Internat Math. Res. Notices 1, 53–59 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.FaMAF-CIEM (CONICET)Universidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations