Algebras and Representation Theory

, Volume 13, Issue 3, pp 319–334

Regularity Conditions for Arbitrary Leavitt Path Algebras

Article

Abstract

We show that if E is an arbitrary acyclic graph then the Leavitt path algebra LK(E) is locally K-matricial; that is, LK(E) is the direct union of subalgebras, each isomorphic to a finite direct sum of finite matrix rings over the field K. (Here an arbitrary graph means that neither cardinality conditions nor graph-theoretic conditions (e.g. row-finiteness) are imposed on E. These unrestrictive conditions are in contrast to the hypotheses used in much of the literature on this subject.) As a consequence we get our main result, in which we show that the following conditions are equivalent for an arbitrary graph E: (1) LK(E) is von Neumann regular. (2) LK(E) is π-regular. (3) E is acyclic. (4) LK(E) is locally K-matricial. (5) LK(E) is strongly π-regular. We conclude by showing how additional regularity conditions (unit regularity, strongly clean) can be appended to this list of equivalent conditions.

Keywords

Leavitt path algebra Acyclic graph von Neumann regular algebra 

Mathematics Subject Classifications (2000)

Primary 16S99 16E50 Secondary 16W50 46L89 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrams, G., Ánh, P.N., Louly, A., Pardo, E.: The classification question for Leavitt path algebras. J. Algebra 320, 1983–1026 (2008) ArXiV: 0706.3874 CrossRefGoogle Scholar
  2. 2.
    Abrams, G., Aranda Pino, G.: The Leavitt path algebra of arbitrary graphs. Houston J. Math. 34(2), 23–442 (2008)MathSciNetGoogle Scholar
  3. 3.
    Abrams, G., Aranda Pino, G., Siles Molina, M.: Finite-dimensional Leavitt path algebras. J. Pure Appl. Algebra 209(3), 753–762 (2007)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ánh, P.N., Márki, L.: Morita equivalence for rings without identity. Tsukuba J. Math. 11(1), 1–16 (1987)MATHMathSciNetGoogle Scholar
  5. 5.
    Ara, P., Moreno, M.A., Pardo, E.:, Nonstable K-Theory for graph algebras. Algebra Represent. Theory 10(2), 157–178 (2007)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Camillo, V., Khurana, D.: A characterization of unit regular rings. Comm. Algebra 29(5), 2293–2295 (2001)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Camillo, V., Yu, H.-P.: Stable range one for rings with many idempotents. Trans. Amer. Math. Soc. 347(8), 3141–3147 (1995)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Goodearl, K.: Leavitt path algebras and direct limits. In: Dung, Guerriero, Hammoudi, Kanwar (eds.) ContemporaryMathematics: Rings, Modules and Representations, pp. 165–188. American Mathematical Society, Providence, R.I. ISBN-10: 0-8218-4370-2 (2009) ArXiV:0712.2554v1
  9. 9.
    Goodearl, K.: Von Neumann Regular Rings. Krieger, Malabar, FL (1991). ISBN 0-89464-632-XGoogle Scholar
  10. 10.
    Kaplansky, I: Topological representation of algebras. II. Trans. Amer. Math. Soc. 68(1), 62–75 (1950)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Nicholson, W.K, Zhou, Y.: Clean Rings: a survey. In: Advances in Ring Theory: Proceedings of the 4th China-Japan-Korea International Conference, pp. 181–198. World Sci., Hackensack, N.J., ISBN: 981-256-425-X (2005)Google Scholar
  12. 12.
    Rowen, L.: Examples of semiperfect rings. Israel J. Math. 65(3), 273–283 (1989)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Raeburn, I., Szymański, W.: Cuntz–Krieger algebras of infinite graphs and matrices. Trans. Amer. Math. Soc. 356(1), 39–59 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Colorado at Colorado SpringsColorado SpringsUSA

Personalised recommendations