Rigid Dualizing Complexes Over Commutative Rings
- 144 Downloads
- 8 Citations
Abstract
In this paper we present a new approach to Grothendieck duality over commutative rings. Our approach is based on the idea of rigid dualizing complexes, which was introduced by Van den Bergh in the context of noncommutative algebraic geometry. The method of rigidity was modified to work over general commutative base rings in our paper (Yekutieli and Zhang, Trans AMS 360:3211–3248, 2008). In the present paper we obtain many of the important local features of Grothendieck duality, yet manage to avoid lengthy and difficult compatibility verifications. Our results apply to essentially finite type algebras over a regular noetherian finite dimensional base ring, and hence are suitable for arithmetic rings. In the sequel paper (Yekutieli, Rigid dualizing complexes on schemes, in preparation) these results will be used to construct and study rigid dualizing complexes on schemes.
Keywords
Commutative rings Derived categories Dualizing complexes Rigid complexesMathematics Subject Classifications (2000)
Primary: 14F05 Secondary: 14B25 14F10 13D07 18G10 16E45References
- 1.Alonso, L., Jeremías, A., Lipman, J.: Duality and flat base change on formal schemes. In: Studies in Duality on Noetherian Formal Schemes and Non-Noetherian Ordinary Schemes. Contemp. Math. 244, 3–90 (1999)Google Scholar
- 2.Conrad, B.: Grothendieck duality and base change. Lecture Notes in Math. Springer 1750 (2000)Google Scholar
- 3.Etingof, P., Ginzburg, V.: Symplectic reflection algebras, Calogero–Moser space, and deformed Harish–Chandra homomorphism. Invent. Math. 147(2), 243–348 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
- 4.Frankild, A., Iyengar, S., P. Jørgensen: Dualizing differential graded modules and gorenstein differential graded algebras. J. London Math. Soc. 68(2), 288–306 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
- 5.Hakim, M.: Topos Annelés et Schémas Relatifs. Springer (1972)Google Scholar
- 6.Hübl, R., Kunz, E.: Regular differential forms and duality for projective morphisms. J. Reine Angew. Math. 410, 84–108 (1990)zbMATHMathSciNetGoogle Scholar
- 7.Hübl, R.: Traces of differential forms and hochschild homology. Lecture Notes in Math. Springer-Verlag, Berlin 1368 (1989)Google Scholar
- 8.Kapustin, A., Kuznetsov, A., Orlov, D.: Noncommutative instantons and twistor transform. Comm. Math. Phys. 221, 385–432 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
- 9.Kleiman, S.L.: Relative duality for quasi-coherent sheaves. Compositio Math. 41(1), 39–60 (1980)zbMATHMathSciNetGoogle Scholar
- 10.Kunz, E.: Kähler Differentials. Vieweg, Braunschweig/Wiesbaden (1986)zbMATHGoogle Scholar
- 11.Lipman, J.: Dualizing sheaves, differentials and residues on algebraic varieties. Astérisque 117 (1984)Google Scholar
- 12.Lipman, J.: Residues and traces of differential forms via Hochschild homology. Contemp. Math. AMS, Providence 61, (1987)Google Scholar
- 13.Lipman, J., Nayak, S., Sastry, P.: Pseudofunctorial behavior of Cousin complexes on formal schemes. Contemp. Math. AMS 375, 3–133 (2005)MathSciNetGoogle Scholar
- 14.Neeman, A.: The Grothendieck duality theorem via Bousfield’s techniques and Brown representability. J. Amer. Math. Soc. 9(1), 205–236 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
- 15.Hartshorne, R.: Residues and duality. Lecture Notes in Math. Springer-Verlag, Berlin 20, (1966)Google Scholar
- 16.Sastry, P.: Residues and duality on algebraic schemes. Compositio Math. 101, 133–178 (1996)zbMATHMathSciNetGoogle Scholar
- 17.Sancho de Salas, F.: Residue: a geometric construction. Canad. Math. Bull. 45(2), 284–293 (2002)zbMATHMathSciNetGoogle Scholar
- 18.Van den Bergh, M.: Existence theorems for dualizing complexes over non-commutative graded and filtered ring. J. Algebra 195(2), 662–679 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
- 19.Verdier, J.L.: Base change for twisted inverse image of coherent sheaves. Algebraic Geometry. Oxford Univ. Press, pp. 393–408 (1969)Google Scholar
- 20.Yekutieli, A.: Dualizing complexes over noncommutative graded algebras. J. Algebra 153(1), 41–84 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
- 21.Yekutieli, A.: An explicit construction of the Grothendieck residue complex, (with an appendix by Sastry, P.) Astérisque 208 (1992)Google Scholar
- 22.Yekutieli, A.: Smooth formal embeddings and the residue complex. Canad. J. Math. 50, 863–896 (1998)zbMATHMathSciNetGoogle Scholar
- 23.Yekutieli, A.: Rigid dualizing complexes and perverse aoherent sheaves on schemes (in preparation)Google Scholar
- 24.Yekutieli, A., Zhang, J.J.: Rings with Auslander dualizing complexes. J. Algebra 213(1), 1–51 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
- 25.Yekutieli, A., Zhang, J.J.: Residue complexes over noncommutative rings. J. Algebra 259(2), 451–493 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
- 26.Yekutieli, A., Zhang, J.J.: Dualizing complexes and perverse modules over differential algebras. Compositio Math. 141, 620–654 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
- 27.Yekutieli, A., Zhang, J.J.: Dualizing complexes and perverse sheaves on noncommutative ringed schemes. Selecta Math. 12, 137–177 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
- 28.Yekutieli, A., Zhang, J.J.: Rigid complexes via DG algebras. Trans. AMS 360, 3211–3248 (2008)zbMATHCrossRefMathSciNetGoogle Scholar