On Representations of Affine Hecke Algebras of Type B

Article

Abstract

Ariki’s and Grojnowski’s approach to the representation theory of affine Hecke algebras of type A is applied to type B with unequal parameters to obtain – under certain restrictions on the eigenvalues of the lattice operators – analogous multiplicity-one results and a classification of irreducibles with partial branching rules as in type A.

Keywords

Affine Hecke algebra Representation theory 

Mathematics Subject Classifications (2000)

Primary 20C08 Secondary 16S80 

References

  1. 1.
    Ariki, S.: On the decomposition numbers of the Hecke algebra of G(m,1,n). J. Math. Kyoto Univ. 36(4), 789–808 (1996) MR MR1443748 (98h:20012)MathSciNetMATHGoogle Scholar
  2. 2.
    Bernstein I.N., Zelevinsky, A.V.: Induced representations of reductive \({\wp}\)-adic groups. I. Ann. Sci. École. Norm. Sup. 10(4), 441–472 (1977) MR MR0579172 (58 #28310)MathSciNetMATHGoogle Scholar
  3. 3.
    Brundan, J., Kleshchev, A.: Hecke-Clifford superalgebras, crystals of type \(A\sb {2l}\sp {(2)}\) and modular branching rules for \(\hat S\sb n\). Representat. Theory 5, 317–403 (2001) (electronic) MR MR1870595 (2002j:17024)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Dade, E.C.: Compounding Clifford’s theory. Ann. Math. 91(2), 236–290 (1970) MR MR0262384 (41 #6992)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dipper, R., James, G.: Representations of Hecke algebras of type \(B\sb n\). J. Algebra 146(2), 454–481 (1992) MR MR1152915 (93c:20019)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Geck, M., Pfeiffer, G.: Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras. London Mathematical Society Monographs. New Series, vol. 21. Clarendon and Oxford University Press, New York (2000) MR MR1778802 (2002k:20017)Google Scholar
  7. 7.
    Grojnowski, I.: Affine \(\hat{\mathfrak{sl}}_p\) controls the modular representation theory of the symmetric group and related Hecke algebras. arXiv:math.RT/9907129 (1999, Preprint)Google Scholar
  8. 8.
    Grojnowski, I., Vazirani, M.: Strong multiplicity one theorems for affine Hecke algebras of type A. Transform. Groups 6(2), 143–155 (2001) MR MR1835669 (2002c:20008)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Kato, S.-I.: Irreducibility of principal series representations for Hecke algebras of affine type. J. Fac. Sci., Univ. Tokyo Sect. IA Math. 28(3), 929–943 (1981) MR MR656065 (84b:22029)MathSciNetMATHGoogle Scholar
  10. 10.
    Kleshchev, A.: Representations of symmetric groups and Lie theory. Lecture notes (2001)Google Scholar
  11. 11.
    Kleshchev, A.: Linear and Projective Representations of Symmetric Groups, Cambridge Tracts in Mathematics, vol. 163. Cambridge University Press, Cambridge (2005)Google Scholar
  12. 12.
    Lusztig, G.: Affine Hecke algebras and their graded version. J. Amer. Math. Soc. 2(3), 599–635 (1989) MR MR991016 (90e:16049)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Ram, A., Ramagge, J.: Affine Hecke Algebras, Cyclotomic Hecke Algebras and Clifford Theory. A Tribute to C. S. Seshadri (Chennai, 2002), Trends Math., pp. 428–466. Birkhäuser, Basel (2003) MR MR2017596 (2004i:20009)Google Scholar
  14. 14.
    Vazirani, M.: Parameterizing Hecke algebra modules: Bernstein-Zelevinsky multisegments, Kleshchev multipartitions, and crystal graphs. Transform. Groups 7(3), 267–303 (2002) MR MR1923974 (2003g:20009)CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Vazirani, M.J.: Irreducible modules over the affine Hecke algebra: a strong multiplicity one result. Ph.D. thesis, University of California at Berkeley (1999)Google Scholar
  16. 16.
    Xi, N.H.: Representations of Affine Hecke Algebras. Lecture Notes in Mathematics, vol. 1587. Springer, Berlin (1994) MR MR1320509 (96i:20058)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Mathematical InstituteUniversity of OxfordOxfordUK

Personalised recommendations